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1 Introduction

Periods of crisis, where economic fundamentals are poor as a result of exogenous shocks – either

temporarily or more long-term – are catalysts for government intervention. Often these crises are

coupled with credit market freezes, with banks sitting on capital rather than lending it out, possibly

further worsening fundamentals to the extent that viable firms get denied credit. This creates a

need for government support of bank lending activities in order to minimize disruptions to the real

economy. A case in point is the Covid-19 pandemic, which erupted in early 2020 as an unexpected

and exogenous shock leading to a sudden and deep liquidity crisis for non-financial corporates and

triggering massive interventions by public authorities.

Despite differences across countries, one major form of intervention were public guarantee

schemes (PGSs) aimed at sustaining bank lending by providing a guarantee on bank loans.1 To give

an order of magnitude, in Europe more than 320 billion euros of new loans were provided under

PGSs in the four major European countries (France, Germany, Italy and Spain) as of September

2020 (ECB, 2020). Similarly, in the US 5.16 million borrowers had access to guaranteed loans

through the 669 billion dollars Paycheck Protection Program (PPP) as of end of November 2020

(Balyuk, Prabhala, and Puri, 2020).

Notwithstanding their possible effectiveness as a stimulative tool, the use of loan guarantees

raises a number of important questions in terms of their implications for banks’ underwriting pro-

cesses and thus, ultimately, for financial stability.2 As with any form of insurance, the introduction

of PGSs may reduce banks’ incentives to select and monitor borrowers properly. Indeed, this is a

commonly held view concerning the impact of deposit insurance, for instance, and is often cited as a

rationale for macro-prudential policies (e.g., capital requirements) to control excessive risk-taking.

This perception has fueled a debate concerning the impact of PGSs and whether the reliance on

public support programs induces banks to engage in “evergreening,” thus keeping nonviable firms

alive (see, e.g., Acharya, Borchert, Jager, and Steffen, 2020; Acharya, Crosignani, Eisert, and

1Another way to support lending to small and mid-sized firms in particular has been the Main Street Lending
Program (MSLP) in the US, whereby banks continue to screen and originate loans that can then be sold to a special
purpose vehicle maintained by the Fed (see, e.g., Minoiu, Zarutskie, and Zlate (2021) for an analysis of its effects).

2A growing number of papers analyze the role of banks and other lenders as conduits of public liquidity through
government guaranteed loans to SMEs in Covid times both in Europe (e.g., Core and De Marco, 2020; Gonzalez-Uribe
and Wang, 2020) and the US (e.g., Balyuk et al., 2020; Bartik, Cullen, Glaeser, Luca, Stanton and Sunderam, 2020;
Cole, 2020; Duchin, Martin and Michaely, 2020; Granja, Makridis, Yannelis, and Zwick, 2020; Hubbard and Strain,
2020). The focus in these studies ranges from highlighting the importance of supply heterogeneity in the allocation
of guaranteed loans to their implications on firm employment.
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Eufinger, 2020; Laeven, Schepens, and Schnabel, 2020).

While perhaps valid, these arguments reflect a narrow view on bank lending decisions. As

is well known, bank choices on the asset side also crucially depend on their capital structures. In

particular, the degree of bank capitalization as well as the possibility for investors to withdraw their

funds has been found to affect bank lending decisions (see, e.g., the evidence in Iyer and Puri, 2012;

Iyer, Puri and Ryan, 2016; Martin, Puri and Ufier, 2018; Artavanis, Paravisini, Robles-Garcia,

Seru and Tsoutsoura, 2019; or Carletti, De Marco, Ioannidou and Sette, 2020). In other words,

the quality of a bank’s assets, the threat of runs, and its capital structure are closely intertwined:

investors react to signals on banks’ fundamentals when deciding whether to withdraw their funds

and, anticipating this, banks take investors’ reactions into account when making their lending

decisions. These considerations point to the need for evaluating the impact of PGSs on bank asset

quality and, consequently, financial stability in a framework that incorporates the feedback effects

between bank lending decisions and investors’ behavior.

To tackle these issues, we present a model of financial fragility in the spirit of Goldstein and

Pauzner (2005), which we enrich in two important dimensions. First, we assume that banks max-

imize profits, and fund themselves with equity in addition to demandable deposits. Second, we

introduce a portfolio risk choice for banks by assuming that they can affect the success probability

of loans when choosing their underwriting effort. These two aspects allow us to analyze the inter-

action between the asset and liability side of banks’ balance sheet and to stress the importance of

bank capital structure for the overall effects of the guarantees in terms of banks’ underwriting and

financial stability.

The model has two periods. Banks with some equity capital raise additional funds in the form

of demandable debt and grant long-term loans to finance firms’ projects. Depositors may leave

their funds in the bank until projects mature in the second period or they may withdraw in the

first period. If depositors wait until maturity, they obtain higher returns. However, the bank may

become insolvent due to bad market fundamentals or poor underwriting standards. In such case,

the bank incurs costs associated with bankruptcy, which further reduces the return to depositors.3

When withdrawing early, by contrast, depositors obtain a return that depends on the capital

3Considerable empirical evidence shows that bank bankruptcy costs are substantial. For example, James (1991)
finds that when banks are liquidated, bankruptcy costs are 30 cents on the dollar. The presence of bankruptcy costs
contributes to the build up of social costs around bank failures and thus the need to reduce financial fragility. Our
theoretical framework with endogenous bank portfolio choice and instability resulting from runs is well-suited to
tackle this issue.
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structure of the bank and the number of depositors requesting their money back. As is common

in models of bank runs, depositors base their withdrawal decisions on a signal they receive in an

intermediate period, as this provides information on the fundamentals as well as other depositors’

behavior (see, e.g., Goldstein and Pauzner, 2005).

We first show that banks are subject to runs, whose probability decreases with the level of

bank capitalization. In addition, banks with high levels of capital are subject to runs only when

macroeconomic fundamentals are sufficiently poor (fundamental-driven runs), while banks with low

capital are also prone to panic runs, meaning that their depositors may decide to run for reasons

linked to strategic complementarity problems that arise when they anticipate other depositors may

run. It follows that, for any level of capital, banks can only fail in the final period when their

underwriting effort turns out to be unsuccessful.

We then turn to the analysis of the effects of loan guarantees on both the run probability and

the bank’s underwriting effort. We start by considering a scheme in which the government is in

a first-loss position up to a pre-determined amount. In other words, whenever the borrower is

unable to repay the promised amount to the bank, the government makes a transfer to the bank

to cover part of the loss. Key for the analysis is the treatment of such transfer in case of bank

default. We consider two cases. In the first one, the transfer by the government is subject to the

same bankruptcy costs as any other bank asset. In the second one, the government guarantee is

protected in case of bankruptcy and can be used to repay depositors. The two cases reflect different

views on the nature of the bankruptcy costs. The case of full bankruptcy costs reflects a situation

where bankruptcy losses originate primarily from inefficiencies in the bankruptcy procedures due to

hold-up problems among creditors or inefficient judicial systems. By contrast, the case where the

guarantee is protected in bankruptcy captures a setting where bankruptcy losses stem primarily

from the illiquidity of bank assets, such as loans, and hence do not apply to more liquid assets such

as governmental transfers.

In the case with full bankruptcy costs, the introduction of loan guarantees reduces depositors’

run probability and improves bank underwriting effort. As with any form of insurance, the guaran-

tee increases the range in which the bank is able to make the promised repayment to depositors in

the final date, thus reducing their incentives to withdraw prematurely. However, the introduction

of the loan guarantee has multiple effects on the bank’s monitoring effort. First, there is a direct

beneficial effect as banks obtain higher profits when there is no run and they are solvent. Second,
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the reduction in the run probability increases the likelihood the bank will be able to enjoy its second

period return. Both of these effects improve bank underwriting incentives. This result contrasts

with perceived wisdom related to other forms of guarantees, such as deposit insurance, where their

use is often posited to lead to reduced monitoring and more risk-taking.

We then turn to the case where the loan guarantee is bankruptcy-protected. While, similar to

before, the run probability decreases, the bank’s underwriting effort instead decreases for poorly

capitalized banks. The reason is that the introduction of the loan guarantee now lowers the sen-

sitivity of the run probability to changes in underwriting standards, thus reducing the benefit for

the bank to exert effort to control risk-taking. The latter effect is dominant when the bank has low

capital and, as a consequence, faces a high run risk, so that the loan guarantee becomes bad for

bank incentives. For more capitalized banks, the previous results hold and underwriting standards

improve in the presence of the loan guarantee.

We then extend the analysis to consider another type of loan guarantee where there is sharing of

losses between the government and the bank.4 We find that all results concerning the run probability

and bank underwriting efforts remain qualitatively the same. However, the two schemes differ in

terms of costs and effectiveness for bank incentives. For a given run probability, the first-loss

guarantee provides greater incentives to the bank but at higher costs.

One crucial element of the analysis is whether the guarantee accrues to the bank conditional on

its ability to control risk. In the model, the guarantee is disbursed whenever the firm is unable to

repay the bank. However, whether the bank or its creditors benefit from the guarantee when the

bank’s underwriting effort is successful (i.e., when positive project returns are realized) depends on

the treatment of the guarantee in bankruptcy. In the case of full bankruptcy costs, both the bank

and depositors only stand to receive anything if there is no run and the bank remains solvent. By

contrast, in the case of bankruptcy-protected guarantees, depositors also receive some payment in

the final period when the bank’s underwriting effort is unsuccessful and the bank defaults. This

reduces the sensitivity of depositors’ incentives to run to the bank’s underwriting standards, thus

indirectly benefiting the bank and reducing its incentives. Therefore, the treatment of the guarantee

in bankruptcy becomes de facto equivalent to a conditionality assumption.

In a further step, we extend the analysis to include banks’ project continuation decisions by

4The two schemes we consider mirror the structures of the guarantees used in practice in addressing the need for
sustaining lending in the aftermath of the Covid-19 pandemic (see, for example, European Commission, 2020).
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allowing them to liquidate projects at the interim date. In the absence of runs, all banks would

engage in evergreening (i.e., continue projects that would be efficient to liquidate) and, in line

with the empirical evidence (see e.g., Blattner, Farinha and Rebelo, 2021; and Schivardi, Sette and

Tabellini, 2021), the more so the lower is their level of capitalization. Once runs are taken into

account, loans can be liquidated early either because of runs or directly by the bank. For banks with

low capital, depositors exerts a strong disciplinary force and projects get liquidated early because

of depositor runs. By contrast, when banks have high capital, depositors are more passive and

early liquidation occurs primarily as a result of banks’ decisions. In this context, the introduction

of loan guarantees leads to more evergreening since depositors’ incentives to run decrease, while

banks’ incentives to continue inefficient projects increase, in particular for worse-capitalized banks.

This result is in line with the evidence in Dursun-de Neef and Schandlbauer (2021) that worse-

capitalized banks showed a lower increase in their delinquent loans and loan restructuring during

the pandemic relative to better-capitalized competitors.

Our main contribution is to analyze the role of public loan guarantees, such as those introduced

in the recent pandemic, in a framework where both banks’ portfolio risk choices and financial

fragility are derived endogenously. Guarantees on lending contracts are not uncommon in practice

and have been studied in prior literature. Evidence in Beyhaghi (2021) shows that over one-third

of corporate loans issued by US banks are guaranteed by separate legal entities, mostly in the

form of personal or corporate guarantors. Similarly, Ahnert and Kuncl (2021) report that 62% of

outstanding residential mortgages were insured by the US government through the Government

Sponsored Enterprises in 2018. Ahnert and Kuncl (2021) find that this type of third-party loan

guarantee decreases lending standards, but improves market liquidity. In their model, lenders have

the possibility to pass default risk to an outside guarantor upon origination, thus avoiding costly

screening. We also analyze loan guarantees upon origination, but in a context where these are not

an alternative to bank screening.

Our paper is related to the literature studying alternative ways to transfer credit risk onto third

parties after loan origination. For example, Parlour and Winton (2013) study the effects of credit

default swaps (CDSs) on banks’ monitoring incentives as an alternative to loan sales in secondary

markets. In a repeated setting where reputational considerations matter, they show that CDSs

tend to dominate loan sales only for riskier credits, while their effects on bank monitoring depend

on credit quality. In contrast, we focus on loan guarantees where banks retain both cash flow and
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control rights, and show that in the presence of these guarantees bank incentives depend on the

level of capitalization as well as on the nature of bankruptcy costs.

A large strand of literature has focused on the role of government guarantees such as deposit

insurance or other forms of implicit guarantees on banks’ liabilities. On the one hand, government

guarantees are thought to have a positive role in preventing panic among investors, and hence

help stabilize the financial system (e.g., Diamond and Dybvig, 1983). On the other hand, they

may distort banks’ incentives, leading to an increase in financial fragility (see, e.g., Calomiris,

1990, and Acharya and Mora, 2015). Reconciling the two views, more recent studies show that

government guarantees can be welfare improving because they induce banks to improve liquidity

provision (Keister, 2016), although in a way that sometimes increases the likelihood of runs or

creates distortions in banks’ behavior (Allen, Carletti, Goldstein and Leonello, 2018). In this

paper, we focus on PGSs for loans rather than deposits and study how they affect bank behavior

and financial stability through their interaction on the asset side of the balance sheet. The idea

that a government guarantee on deposits can actually be good for incentives has been studied in

Cordella, Dell’Ariccia, and Marquez (2018), who show that, by reducing a bank’s cost of funding,

a deposit guarantee increases the return to the bank and creates greater incentives to monitor.

Another strand of literature has instead analyzed credit risk in the form of bank monitoring

effort and the role of bank capital, but generally without including financial fragility. For example,

Holmstrom and Tirole (1997) study the incentive problem for a bank to monitor a borrower and

show how this incentive depends on the amount of capital the bank has. Hellmann, Murdock, and

Stiglitz (2000), Repullo (2004), Morrison and White (2005), Dell’Ariccia and Marquez (2006), Allen,

Carletti, and Marquez (2011), Mehran and Thakor (2011), and Dell’Ariccia, Laeven, and Marquez

(2014) study settings where banks are subject to moral hazard in their monitoring decisions, and

where equity capital can serve as a way to improve bank incentives (see also Thakor, 2014, for

a survey). As such, banks may have incentives to raise capital even in the absence of capital

requirements (e.g., Allen, Carletti, and Marquez, 2011). None of these papers, however, studies

how bank monitoring is affected by, and in turn affects, financial fragility in the form of bank runs.

An exception is Kashyap, Tsomocos, and Vardoulakis (2019), who focus on the effect of capital and

liquidity for credit and run risk. Instead, we are interested in the effects of loan guarantees for the

banks’ monitoring choice and the likelihood of runs.

Our analysis of the effect of loan guarantees on banks’ incentives to engage in evergreening
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connects to a recent literature on zombie lending, or in other words the provision of credit to firms

already in distress.5 In Hu and Varas (2021), evergreening emerges as a result of the existence of

dynamic lending relationships and the advantages that a relationship bank can obtain from helping

its borrowers to have a strong reputation. Bruche and Llobet (2014) show that zombie lending

arises from bank limited liability, and that a regulatory intervention in the form of asset buybacks

or subsidizing the foreclosure of bad loans may be effective in reducing banks’ incentives to engage

in evergreening. Relative to these papers, we focus on the effect that the introduction of loan

guarantees has on bank incentives to provide credit to firms in distress and highlight the role of

bank capital. Related to this last point, Blattner et al. (2021) show empirically that, following

the introduction of more stringent capital requirements in Portugal, weak banks started to provide

credit to distressed firms for which the bank had been underreporting loan loss provisions prior the

regulatory change. A similar result is also found in Schivardi et al. (2021), who show that during

the 2008 financial crisis undercapitalized banks were more likely to provide credit to zombie firms

than better capitalized ones. In line with this, in our framework poorly capitalized banks have the

greatest incentive to engage in evergreening. In equilibrium, depositor discipline in terms of runs

interact with the bank liquidation incentives in determining the extent of evergreening.

The important role that depositors’ discipline plays on banks through the use of demandable

contracts and the associated threat of a run has been highlighted in Calomiris and Kahn (1991). In

their paper, banks can abscond with the realized returns and depositors discipline banks by having

the possibility to withdraw their funds prematurely. Similarly, in our framework the run threshold

decreases with underwriting standards and the bank takes this into account when choosing whether

and how monitor its loans.

The paper proceeds as follows. Section 2 presents the baseline model. Section 3 characterizes the

equilibrium without guarantees in terms of both bank monitoring effort and financial fragility. Sec-

tion 4 introduces public guarantees, distinguishing between first loss and loss absorption schemes.

For either scheme, we analyze both the case when all bank revenues are lost in bankruptcy and

when the guarantee is bankruptcy-protected. Section 5 studies the introduction of deposit insurance

and compares it with loan guarantees. Section 6 analyzes the effect of introducing loan guarantees

for banks’ incentives to engage in evergreening, while Section 7 contains concluding remarks. All

proofs can be found in the Appendix.

5A number of earlier contributions focused on the Japanese experience; see, e.g., Peek and Rosengren (2005); and
Caballero, Hoshi and Kashyap (2008).
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2 The model

Consider a three date economy (t = 0, 1, 2) with banks and a large number of atomistic risk-neutral

investors who have a unitary endowment at date 0.6 Each bank has access to a risky loan requiring

one unit of investment. Each bank has (internal) capital of k, and, at date 0, raises the remainder

1 − k from investors in the form of demandable debt, as described further below. We normalize

depositors’ outside option to 1, so that the expected payoff they must receive for depositing their

endowment at a bank must be at least equal to this outside option.

Each bank can make loans to finance a firm’s risky project. The firm’s project, if held to

maturity (i.e., until t = 2), yields a return P̃ , with

P̃ =

{
Rθ w.p. q
0 w.p. 1− q .

The date 2 return on the project depends on the fundamental of the economy θ, with θ ∼ U [0, 2],

and q ∈ [0, 1], which capture the level of macroeconomic risk and the amount of underwriting or

monitoring effort chosen by a bank, respectively.7 Choosing a higher probability of success q is

costly, and we assume that the bank bears a private non-pecuniary cost of c q
2

2 . If liquidated early,

at t = 1, the project yields a (fixed) liquidation value L ≤ 1. We normalize the interest rate a

bank receives on its loan to R, so that for θ ≥ 1, the bank receives full repayment, while for θ < 1,

there is partial default, with the bank receiving Rθ and suffering losses R (1− θ).8 Furthermore,

we assume 1
2

∫ 1
0 qRθdθ + 1

2

∫ 2
1 qRdθ − c

q2

2 = 3
4qR − c

q2

2 > 1 for some q, so that granting loans to

finance firms’ projects dominates storing as long as the bank chooses a sufficiently high monitoring

effort.

The mass 1 − k of investors at each bank holds a standard demandable deposit contract. At

date 1, a depositor can redeem its deposit from the bank at par, i.e., for the same amount that

was originally deposited, while he receives r2 > 1 at date 2 if he waits until then.9 The promised

6The exact number of banks is immaterial as long as there are relatively more investors than banks, so that
investors need only have their reservation utility satisfied in order to be willing to deposit at a bank. Since each
bank has access to a single project, we abstract from additional issues that may emerge as a result of competitive
interaction across banks when competing to grant loans.

7We will use the terms “underwriting” and “monitoring” interchangeably throughout the paper to represent the
effort choices banks must make to improve the repayment probability of the loans they extend.

8Note that this implies the borrower, who owns the project, receives a return of R (θ − 1) when θ > 1 and the
project succeeds (with probability q), and 0 otherwise, when θ ≤ 1 or with probability (1 − q). In other words, loan
default occurs when fundamentals, as measured by θ, are low and with probability 1 − q.

9We consider debt to be demandable, which is equivalent to assuming long-term debt with the possibility for
investors to withdraw earlier for a positive repayment. The optimality of demandable debt has been justified in
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repayments {1, r2} are paid as long as the bank has enough resources. If depositors choose to

withdraw at date 1, the bank liquidates as much of its assets as needed to satisfy withdrawals,

obtaining L < 1 per unit liquidated, and carrying to time 2 any remaining amount. If the bank has

insufficient resources to meet depositors’ demands at date 1, all its assets are liquidated and the

1− k depositors receive a pro-rata share of the liquidation value L.10 By contrast, if the bank fails

to repay depositors r2 at date 2, the bank enters a bankruptcy procedure and depositors experience

losses as a result. For simplicity, we assume bankruptcy costs are 100%, so that depositors receive

nothing upon insolvency of the bank at date 2. The bankruptcy costs may originate either from

coordination failures among a bank’s creditors, which makes it difficult and costly for them to seize

the remaining value of the bank, or from the illiquidity of the bank’s assets, where some value is

lost when selling them to alternative users/lenders. The different possible sources of bankruptcy

costs will play an important role in the analysis of the loan guarantee scheme, as we discuss in

detail below.

The state of the economy θ is realized at the beginning of date 1, but is publicly revealed only

at date 2. After θ is realized at date 1, each depositor receives a private signal si of the form

si = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over [−ε,+ε].

After the signal is realized, depositors decide whether to withdraw at date 1 or wait until date 2.

The timing of the model is as follows. At date 0, banks raise deposits with a deposit contract

{1, r2}, and then choose the riskiness of their portfolios q. At date 1, after receiving the private

signal about the state of the fundamentals θ, depositors decide whether to withdraw early or wait

until date 2. At date 2, the bank’s portfolio return is realized and depositors that chose to wait are

repaid.

the literature by the presence of asymmetric information problems in credit markets (see, e.g., Flannery, 1986; and
Diamond, 1991), conflicts between bank managers and shareholders (see e.g., Calomiris and Kahn, 1991; Diamond
and Rajan, 2001; and Eisenbach, 2017) and idiosyncratic liquidity shocks to banks’ depositors (e.g., Diamond and
Dybvig, 1983). As we argue in Section 4, assuming an early repayment equal to 1 is without loss of generality in
terms of a bank’s exposure to runs.

10Following Goldstein and Pauzner (2005) and related papers, we assume that there are no bankruptcy costs at
date 1, only the 1 − L units of resources that are lost due to the premature liquidation of banks’ loans. Assuming
costs stemming from bankruptcy at date 1 does not qualitatively affect our results. Calculations can be provided to
interested readers.
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3 Economy without guarantees

In this section, we characterize the allocation for a baseline case where there are no guarantees. We

start by analyzing depositors’ withdrawal decisions at date 1, taking the deposit contract {1, r2}

and the riskiness of the portfolio q as given. Then, we move on to the choice of the portfolio

riskiness q and the terms of the deposit contract r2.

3.1 Depositors’ withdrawal decision

Depositors base their withdrawal decisions on the signal they receive, as the signal gives them

information about the economy’s fundamentals θ and the actions of all other depositors in the

bank. When he receives a high signal, a depositor expects the return of his bank’s loan portfolio

to be high and, at the same time, he expects that other depositors have also received a high signal.

This lowers his incentives to withdraw early (i.e., run). Conversely, when a depositor receives a low

signal, he expects a low return for the bank, and hence less cash available to repay depositors. He

also expects a large number of depositors to run. As a result, he has a higher incentive to run. This

suggests that depositors withdraw at date 1 when the signal is low enough, and wait until date 2

when the signal is sufficiently high.

To show this formally, we first examine two regions of extremely bad and extremely good

fundamentals, where each depositor’s action is based on the realization of the fundamentals θ

irrespective of his beliefs about other depositors’ behavior. We start with the lower region.

Lower Dominance Region. The lower dominance region of θ corresponds to the range [0, θ) in

which running is a dominant strategy. Upon receiving a signal in this region, a depositor is certain

that the date 2 expected repayment is lower than the payment from withdrawing at date 1, even

if no other depositors were to withdraw. Given the presence of bankruptcy costs, the depositor

knows that at date 2 he will receive qr2 > 1 only if the bank is solvent and thus able to make the

promised repayment r2 to all 1− k depositors, and 0 otherwise. Thus, his incentives to run depend

on whether the bank is solvent or not, which boils down to the threshold θ (k) being the solution

to

Rθ = (1− k) r2. (2)

Upper Dominance Region. The upper dominance region of θ corresponds to the range [θ, 2]

in which fundamentals are so good that waiting to withdraw at date 2 is a dominant strategy.

Following Goldstein and Pauzner (2005), we construct this region by assuming that in the range
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[θ, 2] the bank’s loan portfolio can be liquidated at date 1 at a value L ≥ 1. The higher liquidation

value guarantees that a bank needs to liquidate no more than 1 unit of its investment for each

withdrawing depositor. As a result, each deposited unit yields to the bank a return qmin {Rθ,R}

at date 2. This implies that, for any θ ≥ 1, a depositor waiting until date 2 receives qr2, which

must be greater than 1 in order for intermediation to be feasible.11 Then, for simplicity, by setting

θ = 1, we ensure that waiting until date 2 is a dominant strategy for any θ ≥ 1.

The Intermediate Region. When the signal indicates that θ is in the intermediate range, [θ, θ),

a depositor’s decision to withdraw early depends on the realization of θ as well as on his beliefs

regarding other depositors’ actions. To see how, we first calculate a depositor’s utility differential

between withdrawing at date 2 and at date 1. Using n to represent the fraction of depositors who

choose to withdraw early, this differential is given by

v (θ, n) =


qr2 − 1 if 0 ≤ n ≤ n̂ (θ)
0− 1 if n̂ (θ) ≤ n ≤ n

0− L
(1−k)n if n ≤ n ≤ 1

,

where n̂ (θ) solves

Rθ

(
1− n (1− k)

L

)
− (1− n) (1− k) r2 = 0, (3)

while n solves

L = n (1− k) .

The threshold n̂ (θ) represents the proportion of depositors running at which a bank is no longer able

to repay r2 to those waiting until date 2, while n captures the number of withdrawing depositors

at which a bank liquidates the entire portfolio at date 1. As shown in Figure 1 and Figure 2, the

shape of the function v (θ, n) depends on whether 1 − k ≷ L, that is, on whether the amount of

deposits is greater or smaller than the liquidation value L. The case when 1− k ≤ L is illustrated

in Figure 1, which shows that the function v (θ, n) is constant in n, the fraction of depositors

withdrawing early, and equal to qr2− 1 > 0 if θ ≥ θ and 0− 1 < 0 if θ < θ. Hence, when 1−k ≤ L,

v (θ, n) is either positive or negative depending on whether θ is above or below θ, which implies

that a depositor’s incentive to run is independent of what others do. This occurs because, in this

case, a bank has enough resources at date 1 to repay all withdrawing depositors and still make the

11If qr2 < 1, depositors would never find it optimal to wait until date 2 and would strictly prefer to withdraw early,
at date 1. Anticipating this, all depositors would prefer to pursue whatever alternative investment is available to
them yielding 1 rather than deposit at the bank. Hence, a minimum requirement for intermediation to be feasible is
that the bank chooses a high enough level of monitoring so that, given the equilibrium r2, qr2 > 1. This can readily
be achieved for c sufficiently low and/or R sufficiently high.
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promised repayment r2 to those waiting until the final date. It follows that runs are only triggered

by the fear that low fundamentals lead to bank insolvency at the final date.

Insert Figure 1

The case when 1 − k > L is illustrated in Figure 2. In this case, the function v (θ, n) is a

constant and positive for 0 ≤ n ≤ n̂ (θ), while in the range n̂ (θ) ≤ n ≤ n it is always below zero.

Insert Figure 2

When 1 − k > L, there are more depositors at the bank that may run at date 1 and thus the

bank may be forced to prematurely liquidate a large amount of assets if many of them demand

their funds before maturity. This introduces strategic complementarities in depositors’ withdrawal

decisions, as is typical in models of runs (e.g., Goldstein and Pauzner, 2005): the expected payoff of

depositors waiting until date 2 is decreasing in the proportion n of depositors withdrawing at date

1, so that their incentive to run increases with n. In other words, a depositor’s withdrawal decision

depends on the others depositors’ behavior and runs are driven by fears of large withdrawals in the

form of panics.

Throughout, we focus our results on the limiting case where ε → 0, so that the noise in

depositors’ information becomes vanishingly small. This implies that all depositors behave alike:

they all either withdraw at date 1, thus originating a run, or wait until date 2. The following

proposition characterizes depositors’ withdrawal decisions and the threshold value of fundamentals

θ below which runs occur.

Proposition 1 The run risk depends on the level of bank capitalization as follows:

a) When 1 − k ≤ L, runs are triggered only by bank insolvency at date 2 and they occur when

θ falls below the threshold θ(k), where

θ(k) =
(1− k) r2

R
, (4)

with θ(k) being decreasing in k: ∂θ(k)
∂k < 0.

b) When 1−k > L, runs are driven also by panics and they occur when θ falls below the threshold

θ∗(q, k), where

θ∗(q, k) = θ
qr2 − π1

qr2 − π1 (1−k)L

, (5)
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where π1 =
∫ n
0 dn +

∫ 1
n

L
(1−k)ndn. The threshold θ∗ (q, k) ∈ (θ (k) , 1) decreases with q, L and k:

∂θ∗(q,k)
∂q < 0, ∂θ∗(q,k)

∂L < 0, and ∂θ∗(q,k)
∂k < 0.

The proposition shows the importance of bank capitalization for run risk. When a bank is well

capitalized (i.e., 1−k ≤ L) runs are only driven by poor fundamentals, and the critical threshold θ

is decreasing in the amount of capital k. The reason is that when 1− k ≤ L, the bank has enough

resources to repay all withdrawing depositors in full at date 1, while still having resources left at

date 2 to repay any depositor waiting until then. In contrast, when a bank has little capital, it

is exposed to runs over a larger range of fundamentals (i.e., for θ < θ∗ with θ∗ > θ) due to the

presence of strategic complementarities. The panic run threshold θ∗ decreases with the level of

capitalization k, but is also decreasing with the safety of the portfolio as measured by q and the

liquidation value L. In particular, increasing the monitoring effort q reduces the bank’s exposure

to panic runs (i.e., ∂θ∗

∂q < 0) because a higher q increases depositors’ expected payoff from waiting

until date 2. Regarding the liquidation value L, the reduction of the run threshold comes from the

fact that a higher L reduces the bank’s liquidation needs, thus leaving more resources for depositors

withdrawing at the final date.

In order to focus on cases where run risk is potentially severe, at least for very poorly capitalized

banks, we assume that there exists a value of capital k̂ ∈ [0, 1 − L) such that θ∗ → 1 as k → k̂ at

the equilibrium. In other words, run risk is maximal for banks with sufficiently low levels of capital

(the threshold level of capital k̂ can be arbitrarily small).12 The majority of our results do not

depend on this assumption and are robust to lower levels of run risk, and we explicitly highlight

below which result makes use of the assumption on maximal run risk.

3.2 Bank’s date 0 decisions

Having characterized depositors’ withdrawal decisions, we now solve for banks’ underwriting stan-

dards q as well as the repayment r2. Since we want to consider all possible levels of capitalization

k, in what follows, we use θR to denote the relevant run threshold, i.e., θR = θ when 1− k ≤ L and

θR = θ∗ when 1− k > L.

For a given level of capital k, each bank chooses its underwriting effort q and depositors’

repayment r2 in order to maximize its expected profits, anticipating depositors’ withdrawal decisions

12It is not difficult to construct explicit numerical examples showing that for many choices of the parameters R,
c, and L, the equilibrium run probability θ∗ satisfies this condition for low enough k, so that the assumption is not
vacuous. Details provided upon request.
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at date 1. The problem for a bank is

max
q,r2

Π =
1

2

∫ θR

0
qmax

{
Rθ

(
1− 1− k

L

)
, 0

}
dθ +

1

2

∫ 1

θR
q [Rθ − (1− k) r2] dθ+

1

2

∫ 2

1
q [R− (1− k) r2] dθ −

cq2

2
(6)

subject to

1
2

∫ θR

0
min

{
L

1− k
, 1

}
dθ︸ ︷︷ ︸

utility obtained in a run

+ 1
2

∫ 2

θR
qr2dθ︸ ︷︷ ︸

utility obtained if no runs occur

≥ 1︸︷︷︸
outside investment opportunity

,
(7)

and

Π ≥ k. (8)

The first three terms in (6) capture the three instances when the bank accrues positive profits

at date 2. First, when 1 − k ≤ L so that θR = θ and a run occurs (i.e., for θ < θ), the bank

does not have to liquidate its entire portfolio at date 1 to satisfy the early withdrawals, and thus

it obtains the return Rθ on the 1 − 1−k
L units of assets that are carried over until date 2 if the

project is successful (i.e., with probability q). By contrast, when 1 − k > L, the bank liquidates

the entire portfolio at date 1 and makes zero profits when a run occurs. Second, for any level of k,

when no runs occur and θ ∈ (θR, 1], the profits are given by the return Rθ minus the repayment to

depositors, (1− k) r2. Finally, for any level of k, when no runs occur and θ ∈ [1, 2], the bank obtains

the fixed return R net of depositors’ repayments. The last term in (6) represents the monitoring

cost cq2

2 the bank bears.

The condition in (7) represents depositors’ participation constraint and states that the expected

repayment from depositing in a bank is not lower than the value of the outside investment oppor-

tunity. By depositing in a bank, depositors expect to receive the minimum between the pro-rata

share L
1−k and the promised repayment 1 if there is a run (i.e., when θ ≤ θR), and qr2 if there is no

run (i.e., θ > θR). From (7), one can see that a minimal condition for depositors to provide funds

to the bank is qr2 ≥ 1. This is the case since the payoff in the event of a run is min
{

L
1−k , 1

}
≤ 1.

Finally, the inequality in (8) is simply a non-negativity constraint on the profits. We have the

following result.

Proposition 2 Banks choose the monitoring effort q and the depositors’ repayment r2 as follows:
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a) When 1− k ≤ L, each bank chooses q as a solution to

1

2

∫ θ

0
Rθ

(
1− (1− k)

L

)
dθ +

1

2

∫ 1

θ
[Rθ − (1− k) r2] dθ +

1

2

∫ 2

1
[R− (1− k) r2] dθ − cq = 0, (9)

where r2 > 1 is the solution to (7) holding with equality;

b) When 1− k > L, each bank chooses q∗ as a solution to

1

2

∫ 1

θ∗
[Rθ − (1− k) r2] dθ +

1

2

∫ 2

1
[R− (1− k) r2] dθ −

1

2

∂θ∗

∂q
q
[
RθR − (1− k) r2

]
− cq = 0, (10)

where r2 > 1 is the solution to

−1

2

∂θ∗

∂r2
[Rθ∗ − (1− k) r2]−

1

2

∫ 2

θ∗
(1− k) dθ = 0 (11)

when µ = 0, and to (7) holding with equality when µ > 0, where µ is the Lagrange multiplier on

depositors’ participation constraint as defined in the Appendix.

In choosing q, a bank trades off the marginal cost of an increase in q with its marginal benefit.

The former is given by cq. The latter, which is captured by the first three terms in either (9) or

(10), is given by the increase in expected profits resulting from a higher probability of success in

all the instances where the bank obtains positive profits, which depends on the level of k. When

1−k > L, there is an additional term reflecting how an increase in q affects the run threshold. This

is captured by the third term in (10) since by monitoring more the bank also reduces the risk of a

run, i.e., ∂θ
∗

∂q < 0. This provides an additional incentive for the bank to choose a high q, separately

from the fact that a higher q increases the probability the bank’s loan is repaid.

Proposition 2 shows that also the determination of r2 depends on the level of capitalization of

the bank. When a bank is well capitalized so that 1 − k ≤ L, it finds it optimal to choose the

lowest possible repayment r2 consistent with depositors being willing to provide funds to the bank.

This is the case because the run threshold θ increases with r2 and so bank’s profits are strictly

decreasing in r2. By contrast, when 1− k > L and panic runs may occur, in choosing the optimal

repayment r2 a bank also accounts for the potentially beneficial effect that a higher r2 has on the

run threshold θ∗, since θ∗ is decreasing in r2. As a result, a bank may find it optimal to choose a

repayment r2 which leaves depositors’ participation constraint (7) slack. In other words, in some

cases, it may be optimal for a bank to leave rents to depositors in order to reduce its exposure to

runs and ultimately increase expected profits.
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4 Public loan guarantee schemes

In this section, we study how the introduction of loan guarantees affects bank risk-taking and overall

bank stability. While the specific terms may differ across countries, PGSs take essentially one of

two forms: first-loss or loss-sharing.13 In the former, losses are first attributed to the State up to a

certain limit, and only then to the credit intermediary. In the latter, by contrast, losses are sustained

proportionally by the credit institutions and the State in some pre-determined proportions. We

begin by focusing on a first-loss loan guarantee and show later in Section 4.3 that the main insights

of the analysis carry over to the loss-sharing scheme.

In the context of our theoretical framework, the rationale for the introduction of the guarantee

stems from an unexpected negative shock such that, absent some form of stimulative policy, banks

may opt not to lend, thus worsening the real effect of the shock. A simple example would be a

shock to the liquidation value of projects, L, causing it to fall and making loans less attractive to

banks.14 Another possibility would be a reduction in R, the expected return of the projects.15 For

the sake of simplicity, we leave this part out of the formal development of the model. Moreover,

since the guarantees are introduced as responses to unanticipated shocks, we assume they are put

in place after banks have raised financing but before making their bank lending decisions.

For each guarantee scheme, we will consider two cases concerning the treatment of the loan

guarantee in case the bank is insolvent at date 2. In the first case, we will assume that the amount

provided by the government is lost in bankruptcy in the same way as the return of any other

asset the bank carries until date 2. In the second case, by contrast, we will assume that the

guaranteed amount is protected from dissipative costs in bankruptcy and, thus, the transfer from

the government to a bank can be used to repay investors. We will refer to the first case as “full

bankruptcy costs” and to the second as “bankruptcy protected” to indicate that the guarantee is

not subject to losses arising during bankruptcy. The first case captures the idea that the bankruptcy

costs primarily originate from inefficiencies in the bankruptcy procedures due to hold-up problems

13See, for example, European Commission (2020) for a description of the loan guarantee schemes used in Europe
during the pandemic.

14Interestingly, an unexpected shock to the liquidation value also rationalizes the normalization of the date 1
interest rate to 1, since for any value of the date 1 interest rate there is always a negative shock to L sufficiently large
that panic runs are possible.

15Note that even though banks may find lending unattractive, socially the loan may still represent a positive net
present value (NPV) investment, both because banks do not capture the full surplus of the loan, and because the run
risk lowers the value to the banks. Policies that reduce run risk (e.g., deposit insurance or suspension of convertibility)
would make lending more attractive, even if the loan itself was not subsidized.
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among creditors or inefficient judicial systems and, as a result, resources are lost if the bank defaults

at date 2. The second case would be consistent with a setting where bankruptcy costs primarily

stem from illiquidity associated with selling assets. The guarantee paid by the government would

likely be in cash or other such liquid assets and less subject to dissipation. As seen below, the

distinction between these two cases turns out to be important for how guarantees affect bank

incentives.

Finally, in order to isolate the effect of loan guarantees, we introduce them into a setting where

there are no other guarantees already in place. In practice, of course, loan guarantees, being used

as stimulative policy tools, are typically layered on top of other existing guarantees, such as deposit

insurance, which we discuss later in Section 5. In our framework, the two types of guarantees –

loan and deposit – are independent of each other and in fact turn out to have no complementary

effects on bank incentives. Hence, the findings presented below are largely unchanged if the loan

guarantees come on top of already-present deposit guarantees.

4.1 First-loss guarantee scheme with full bankruptcy costs

We start by considering the case where the government is in a first-loss position: it guarantees any

losses up to an amount Rx, with any losses in excess of this amount being borne by the bank.

This means that the government will transfer an amount Rmin {x, 1− θ} to the bank when the

borrower is unable to repay the promised amount R, so that for any θ ≥ 1− x the bank suffers no

losses and receives the full payment R, whereas for θ < 1 − x the bank’s return declines as θ falls

since the losses are greater than the guarantee provided. Figure 3 describes how the introduction

of the guarantee modifies the bank’s payoff as a function of the fundamental θ. As shown in the

figure, the bank now obtains the full repayment R for θ ∈ [1− x, 1] and a greater payoff R(θ + x)

in the region with partial default, i.e., for θ ∈ [0, 1− x].

Insert Figure 3

As in the case without the loan guarantee, we start by characterizing depositors’ withdrawal

decisions and then move on the choice of q by banks. Consider for now that the transfer is lost

in bankruptcy. Since our objective is to study how guarantees affect bank incentives to control

risk-taking, in what follows we will sometimes divide the loan guarantee x into two parts, x1 <
1−k
R

and x2 ≤ x1, corresponding to payments made when the bank’s monitoring effort pays off and the
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project succeeds, with probability q, and when this effort does not pay off and the loan portfolio

fails to produce anything, which occurs with probability 1− q, respectively. In practice, of course,

distinguishing between such cases may not be easy or even feasible. Separating the payment into

two components allows us to tease out precisely how bank incentives are affected by the introduction

of the loan guarantee, even if any guarantee is in reality likely to cover both possibilities, at least

partly. The condition 1−k
R > x1 ≥ x2 ensures that the government’s transfer alone is not sufficient

to guarantee that depositors can always withdraw early at par.

The following proposition characterizes depositors’ withdrawal decisions. We use the subscript

x to indicate the case of the first-loss guarantee of size x, with full bankruptcy costs.

Proposition 3 With a first-loss guarantee x = (x1, x2) and full bankruptcy costs, runs occur for

θ < θRx < θR as given by

θRx = θR − x1, (12)

where θRx = θx and θR = θ for 1 − k ≤ L, while θRx = θ∗x and θR = θ∗ for 1 − k > L. In either

case, the threshold θRx decreases with x1, k, L and q, while it is independent of x2:
∂θRx
∂x1

= −1 < 0,

∂θRx
∂k < 0, ∂θRx

∂L < 0, ∂θRx
∂q < 0 and ∂θRx

∂x2
= 0.

As in the case without a loan guarantee, runs can be only fundamental-driven (when 1−k ≤ L)

or also panic-driven (when 1 − k > L), but the probability of runs is now reduced for any given

level of bank capitalization. Moreover, k, L and q have the same effect on the run threshold θRx

as in the economy without guarantees. As shown in Figure 4, the threshold θRx decreases with the

amount guaranteed because, ceteris paribus, x1 increases the range in which the bank is able to

make the promised repayment to depositors at date 2, thus reducing their incentives to withdraw

prematurely. Importantly, the run threshold θRx only depends on the amount x1 transferred in the

case the bank’s monitoring effort pays off and, with probability q, the project succeeds, but not

on the transfer x2 when instead the project fails, with probability 1 − q. The reason is that the

amount x2 does not impact depositors’ payoff at date 2 as x2 is lost in bankruptcy.

Insert Figure 4

Having characterized the run thresholds, we now move on to the choice of q. Each bank’s
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optimization problem is as follows:

max
q

1

2

∫ θRx

0
qmax

{
R (θ + x1)

(
1− (1− k)

L

)
, 0

}
dθ +

1

2

∫ 1−x1

θRx

q [R (θ + x1)− (1− k) r2] dθ (13)

+
1

2

∫ 2

1−x1
q [R− (1− k) r2] dθ −

cq2

2
,

where r2 is characterized in Proposition 2 since the guarantee scheme is assumed to be an unantic-

ipated shock to the banking sector, and θRx denotes the relevant run threshold, i.e., θRx = θx when

1−k ≤ L and θRx = θ∗x when 1−k > L. The terms in (13) are similar to those in (6) in the baseline

model, with two main differences. First, as indicated in the first two terms, the bank obtains now

a per-unit return R (θ + x1) at date 2 instead of Rθ whenever the loan is not fully repaid. Second,

as shown in the third term, the bank is able to obtain the full repayment R in the larger range of

values of θ ∈ [1− x1, 2] rather than for θ ∈ [1, 2].

In the presence of a first-loss guarantee scheme with full bankruptcy costs, each bank chooses

the underwriting effort q
x

as a solution to

1

2

∫ θx

0
R (θ + x1)

(
1− (1− k)

L

)
dθ+

1

2

∫ 1−x1

θx

[R (θ + x1)− (1− k) r2] dθ+
1

2

∫ 2

1−x1
[R− (1− k) r2] dθ−cq = 0

(14)

when 1− k ≤ L and q∗x when 1− k > L as a solution to

1

2

∫ 1−x1

θ∗x

[R (θ + x1)− (1− k) r2] dθ+
1

2

∫ 2

1−x1
[R− (1− k) r2] dθ−

1

2

∂θ∗x
∂q

q [R (θ∗x + x1)− (1− k) r2]−cq = 0.

(15)

The interpretation of the various terms in (14) and (15) is similar to that of (9) and (10). The

bank trades-off the marginal benefits of an increase in q, as captured by the first three terms in

either expression, with the marginal cost, as measured by cq. As before, the bank remains active

until date 2 even in the presence of a run at date 1 only when 1− k ≤ L, as captured by the first

term in (14), while, when 1 − k > L, there is an additional effect, reflecting how an increase in q

affects the run threshold θ∗x, as captured by the third term in (15), where ∂θ∗x
∂q < 0.

In the following proposition, we characterize the effect that the guarantees have on banks’

underwriting effort decisions. We use qRx to denote either q
x

or q∗x, depending on the level of bank

capital.

Proposition 4 For any given level of k, bank underwriting effort increases with the guaranteed

amount x1, while it is independent of x2: dqRx
dx1

> 0 and dqRx
dx2

= 0. Hence, the introduction of a loan

guarantee with x1 = x2 = x increases bank underwriting effort for any level of k: dqRx
dx > 0.
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This proposition highlights that, contrary to what might be expected, the introduction of the

loan guarantee induces banks to reduce the riskiness of their portfolios through improved under-

writing incentives. The mechanism resembles a ”charter value” in that the bank has more to lose

when it fails. In fact, the loan guarantee increases the bank’s expected profits both through an

increase in the probability of survival until date 2 (i.e., a reduction of the threshold θRx ) and an

increased per-unit return in case of survival. Given this, the bank has stronger incentives to remain

active until the final date, which can be achieved through a higher underwriting effort.

It is worthwhile noting that the unambiguously positive effect of the loan guarantee on bank

underwriting effort obtains for relatively small values x of the guarantee, so that, as per the as-

sumption that x < 1−k
R , the guarantee by itself is insufficient to fully cover the promised repayment

to depositors. Once the guarantee gets sufficiently large (i.e., if x ≥ 1−k
R ), depositors no longer

impose any discipline on the bank through the threat of a run. Moreover, the bank may receive a

portion of the loan guarantee even when its project fails, with probability 1− q. In that case, the

guarantee would reduce banks’ underwriting incentives since the bank’s payoff also winds up being

partly guaranteed.16

Having computed the effect on bank risk-taking and the run threshold, we can now see how the

presence of the loan guarantee affects financial stability. While stability has different connotations,

ranging from whether viable projects are inefficiently liquidated to the possibility that projects that

should be terminated are allowed to continue (an issue we discuss in Section 6), here we focus on

the probability the bank is able to carry its projects to maturity, and have those projects deliver

positive returns. Specifically, we define a measure of financial stability as the probability that the

bank does not fail, and we denote this by γRx as follows:

γRx ≡ qRx Pr
(
θ > θRx

)
. (16)

The measure γRx combines the notion traditionally studied in the literature on bank runs that

focuses primarily on whether the panic run threshold, θ∗x, increases or falls, with the perspective

that banks’ actions, through their underwriting effort q, ultimately affect overall stability. We have

the following result.

16One way of viewing this is that, for x such that 1−k
R

> x, the guarantee effectively represents a state-contingent
payment to the bank since it only receives a portion of the guarantee when its project succeeds. Since the success of
the bank’s projects depends on its underwriting effort, the loan guarantee induces more effort by the bank.
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Corollary 1 Under full bankruptcy costs, the first-loss guarantee x = (x1, x2) increases financial

stability, i.e., ∂γRx
∂x1

> 0.

The loan guarantee affects financial stability through two channels. First, it has a direct effect

on depositors’ incentives to run: a larger guarantee x1 reduces depositors’ incentives to run and

so the run thresholds θRx decreases. Second, by inducing banks to behave more prudently, the

loan guarantee increases the probability that a bank’s project is successful thus, ceteris paribus,

increasing financial stability. Finally, the increase in qRx also further reduces depositors’ incentives

to run, thus increasing even further the probability that a bank does not fail.

4.2 Bankrupcty-protected first-loss guarantee scheme

In this section, we consider the possibility that the government’s transfer to banks, denoted as

x = (x1, x2), is sheltered from other frictions which lead to losses resulting from bankruptcy.

Specifically, we assume that, in case of default by the bank, depositors receive these amounts even

if any revenues stemming from the bank’s loans are lost in bankruptcy. This would be consistent

with a setting where bankruptcy costs primarily stem from illiquidity associated with selling assets,

be they loans or otherwise. The guarantee paid by the government would likely be in cash or other

such liquid assets, and less subject to dissipation. As in the previous section, we assume that

1− k
R

> x1 ≥ x2, (17)

so that the guaranteed amounts are not strictly larger than the (maximum) repayment of 1 that

depositors could possibly obtain by withdrawing early, and, in turn, runs are not completely ruled

out. The following proposition characterizes depositors’ withdrawal decision.

Proposition 5 The run risk in the presence of a first-loss guarantee x = (x1, x2) whose transfers

are protected in bankruptcy is as follows:

a) When 1− k ≤ L, runs occur for θ < θPx , with θPx = θx < θ as given by

θPx = θ − x1.

b) When 1− k > L, runs occur for θ < θ∗Px , with θ∗Px < θ∗x < θ∗ as given by solution to

π1 =

∫ n̂x(θ)

0
qr2dn+

∫ n

n̂x(θ)
q
Rx1

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Rx2

(
1− n (1−k)

L

)
(1− n) (1− k)

dn, (18)
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where π1 =
∫ n
0 dn+

∫ 1
n

L
(1−k)ndn, as in Proposition 1. The run threshold θ∗Px decreases with q, k,

x1, and x2: ∂θ∗Px
∂q < 0, ∂θ

∗P
x
∂k < 0, ∂θ∗Px

∂x1
< 0 and ∂θ∗Px

∂x2
< 0.

As in the case with full bankruptcy costs, the introduction of a first-loss guarantee induces a

reduction of the run probability. When the bank is well capitalized, i.e., when 1 − k ≤ L, the

fact that the loan guarantee is not lost during the bankruptcy process has no effect on depositors’

incentives to withdraw and thus the run threshold is the same as before. This is because the

payment accruing to depositors when the bank is insolvent at date 2, either in the case when

monitoring pays off (i.e., with probability q) and when it does not (i.e., with probability 1− q), is

always lower than what they obtain when withdrawing.

By contrast, for poorly capitalized banks, i.e., when 1− k > L, the loan guarantee is now more

effective in reducing depositors’ incentives to run than in the case of full bankruptcy costs, so that

θ∗Px < θ∗x. The reason is that, in the presence of strategic complementaries in withdrawal decisions,

depositors compare the expected payoff at date 1 in the case of runs with that from waiting until

date 2, and all payoffs depend now on the others depositors’ actions, as captured by the number of

withdrawing depositors n – this can be seen from (18). This implies that depositors now take into

account the possibility that, depending on the size of n, they may obtain a pro-rata share both at

date 1 or date 2, and that the guarantees x1 and x2 increase the payoffs they obtain at date 2, as

evident in the last two terms on the LHS in (18). This reinforces their incentives to wait until date

2.

As before, the run threshold θ∗Px is decreasing in both q and k. Concerning the guaranteed

amounts, both the transfers x1 and x2 are preserved in bankruptcy and thus increase the payoffs

that depositors receive whenever the bank is unable to make the promised repayment r2, either

when monitoring is effective, with probability q, and they obtain
Rx1

(
1−n (1−k)

L

)
(1−n)(1−k) , or when it is not,

with probability 1 − q, and they obtain
Rx2

(
1−n (1−k)

L

)
(1−n)(1−k) . It follows that, in contrast to the case of

full bankruptcy costs, the threshold θ∗Px depends now on both transfers x1 and x2 in addition to

the level of bank capital k. Also, differently from before, the presence of the bankruptcy-protected

guarantee changes the sensitivity of the run threshold to the transfer x1. In particular, while the run

threshold θ∗x in the case of full bankruptcy costs decreases linearly with x1, the threshold θ∗Px is now

more sensitive and decreases even more as x1 changes, i.e., ∂θ
∗P
x

∂x1
< ∂θ∗x

∂x1
= −1. The intuition behind

the greater sensitivity lies again on the extra effect of the guarantee in terms of higher payoffs at
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date 2 when the bank is unable to repay the promised amount because the guaranteed transfers

are received by depositors even in bankruptcy. As a result, the sensitivity of θ∗Px to changes in

x = (x1, x2) and q are not independent, differently from the case when the government transfer is

lost in bankruptcy.

The bank’s maximization problem for the choice of q is similar to the one characterized in (13),

with the only difference that the relevant run threshold is θPx instead of θRx , where θPx = θPx for

1−k ≤ L and θPx = θ∗Px for 1−k > L. In the presence of a first-loss bankruptcy protected guarantee

scheme, the bank chooses the underwriting effort qP
x

= q
x

as the solution to (14) when 1− k ≤ L,

and q∗Px as a solution to

1

2

∫ 1−x1

θ∗Px

[R (θ + x1)− (1− k) r2] dθ+
1

2

∫ 2

1−x1
[R− (1− k) r2] dθ−

1

2

∂θ∗Px
∂q

q
[
R
(
θ∗Px + x1

)
− (1− k) r2

]
−cq = 0

(19)

when 1 − k > L. As before, the bank chooses the underwriting effort by trading-off the marginal

benefits of an increase in q with the marginal cost. For banks with 1− k ≤ L the equilibrium value

is the same as with the case with full bankruptcy costs as the run threshold is also the same, while

it is given by the same expression but with a different run threshold, i.e., θ∗Px instead of θ∗x, as in

(19), when 1− k > L.

As before, we compute the effect of the introduction of the loan guarantee (x1, x2) on the

bank’s monitoring incentives q. Recall our assumption that there exists a value of capital k̂ such

that θ∗ → 1 when k = k̂. We then have the following.

Proposition 6 Each bank’s underwriting effort is independent of the guaranteed amount x2 (dq
R
x

dx2
=

0) when 1− k ≤ L and decreases with it (dq
R
x

dx2
< 0) otherwise. Hence, if x1 = x2 = x, the following

holds:

a) When 1 − k ≤ L, the introduction of the loan guarantee always leads to more bank effort,

i.e.,
dqP
x

dx > 0;

b) When 1 − k > L, there exists a value of k denoted as k̂Px , with k̂ < k̂Px < 1 − L, such that

introducing the loan guarantee reduces bank effort for k < k̂Px , while increasing it as k → 1 − L:

dq∗Px
dx < 0 for k < k̂Px and dq∗Px

dx > 0 for k → 1− L.

The proposition shows that the introduction of the loan guarantee has a different effect for low

versus high capital banks when the transfer x is not lost in bankruptcy. When banks are very

well capitalized (i.e., for 1 − k ≤ L), so that they are only exposed to fundamental-driven runs,
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introducing the loan guarantee induces banks to take less risk and hence choose a higher q. This

also occurs for banks that are exposed to panic runs but have a sufficiently high level of capital,

i.e., k approaching 1− L.

By contrast, when the level of bank capital is sufficiently low, the opposite is true: the introduc-

tion of the loan guarantee leads to less effort and more risk-taking. The reason is that, unlike the

case studied in Proposition 4, the effect of the government transfer x2 in the event of project failure

is to decrease the bank’s incentives for effort.17 For sufficiently poorly capitalized banks, these

effects dominate since these banks are subject to a high run probability and low profits, making

the government transfer in failure states relatively important for depositors. As a consequence,

poorly capitalized banks reduce their underwriting effort in the presence of guarantees. This result

is derived under the assumption that the bank faces extreme run risk for very low values of k (i.e.,

θ∗ → 1 as k → 0). This ensures that the marginal benefit of the loan guarantee in terms of higher

profits when no run occurs approaches zero. When the consequences of a bank run are less severe,

as occurs in banks with more capital, or if strategic complementarities are less important, there

may not be a region where the introduction of a loan guarantee has a negative incentive effect on

bank monitoring.

As in the previous section, it is worth noting that the results in Proposition 6 hold even though,

for x small, the guarantee is essentially a state-contingent transfer from the perspective of the

bank. In other words, even though the guarantee is not dissipated under bankruptcy, it is still

small enough that in the event of failure (i.e., with probability 1− q), there is nothing left for the

bank. Hence, there is no direct benefit for the bank arising from the loan guarantee in default

states. Nevertheless, the introduction of the guarantee can have a negative incentive effect purely

through its effect on depositor behavior and, consequently, financial fragility, which here is reflected

in the reduced sensitivity of the run threshold θ∗Px to the bank’s choice of q.

Finally, from the perspective of the financial stability measure introduced above, γRx ≡ qRx Pr
(
θ > θRx

)
,

where qRx and θRx refer, respectively, to the relevant level of bank monitoring and depositors’ run

threshold in equilibrium when the transfer is bankruptcy protected, one can see that for sufficiently

well-capitalized banks γRx will be higher as a result of the introduction of the loan guarantee. For

17This occurs because the component x2 of the loan guarantee reduces the sensitivity of the run threshold to
changes in q and, at the same time, by reducing the run threshold, it reduces the losses associated with an increase
in the probability of a run due to low monitoring incentives by the bank. These two effects combined lead the bank
to have lower incentives to exert effort q the higher is x2.
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poorly capitalized banks, namely those for which k < k̂Px as defined in Proposition 6, the effect of

the introduction of a loan guarantee is ambiguous on financial stability since there are two coun-

tervailing forces at play. On the positive side, ceteris paribus the guarantee scheme reduces the

likelihood of a run by depositors. However, on the negative side, bank monitoring decreases for

banks with very low capital. The overall effect is therefore the combination of these two forces,

and depends on which source of risk – poor loan performance or run risk – is more important for

the bank.

4.3 Guarantee scheme with loss-sharing

Our results above on the incentive effects of a loan guarantee scheme hold for the case where the

government is in a first-loss position, and insures losses to banks up to an amount Rx. In this sec-

tion, we show that those qualitative results extend to the other main type of loan guarantee scheme

being employed, namely one of loss sharing between the government and the bank. Specifically,

suppose that the government commits to cover a fraction y ∈ (0, 1) of bank losses R(1− θ) and, as

a result, the bank per unit loan return is equal to max {R,Rθ +R (1− θ) y}.

Similarly to the first-loss guarantee scheme illustrated in the previous section, by increasing

banks’ loan return, the support offered by the government affects both depositors’ incentives to run

and the banks’ risk-taking decision. We have the following result, which summarizes both the case

with full bankruptcy costs and the one where transfer are bankruptcy-protected for the case when

y1 = y2.

Proposition 7 The introduction of a loss-sharing guarantee with y1 = y2 leads to the following:

a) In the case of full bankruptcy costs:

1. Runs occur for θ < θy when 1 − k ≤ L, and for θ < θ∗y when 1 − k > L, where θ∗y > θy are

given, respectively, by

θy =
θ − y
1− y

and θ∗y =
θ∗ − y
1− y

. (20)

2. For any level of k, each bank’s underwriting effort qRy increases in the guaranteed amount:
dqRy
dy > 0.

b) In the case where the government’s transfers are protected from bankruptcy:
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1. Runs occur for θ < θPy = θy when 1−k ≤ L and for θ < θ∗Py when 1−k > L, where θ∗Py > θPy

solves

π1 =

∫ n̂y(θ)

0
qr2dn+

∫ n

n̂y(θ)
q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn,

2. Each bank’s effort qRy increases with the introduction of the guarantees when 1 − k ≤ L:
dq
y

dy > 0. Moreover, there exists a value k̂Py ∈
(
k̂y, 1− L

)
such that qRy decreases after the

introduction of guarantees for any k < k̂Py :
dq∗y
dy < 0.

As stated in the proposition, the scheme where the guarantee requires banks to share any

losses on a proportional basis delivers the same qualitative results in terms of financial fragility

and bank underwriting efforts as the scheme where the guarantee represents a first-loss position

for the government. As before, irrespective of whether the guaranteed amounts y1 and y2 are

lost or protected in bankruptcy, banks are more likely to experience runs when they are poorly

capitalized (i.e., when 1−k > L) than when they are well capitalized (i.e., when 1−k ≤ L), as they

also experience panic runs in additional to fundamental-driven ones. Also, for any level of bank

capitalization, the guarantee reduces the run threshold relative to the case with no guarantees. As

before, the effect of the loan guarantee on bank monitoring incentives depends on the treatment

of the guarantee in bankruptcy and the level of capitalization. With full bankruptcy costs, the

bank increases its underwriting effort when a guarantee is introduced, for any capital level. By

contrast, the bank responds to the introduction of a bankruptcy-protected guarantee by decreasing

its underwriting effort when it has little capital, i.e., when k < k̂Py , in the range 1 − k > L (this

again makes use of the assumption that there exists a value of capital k̂ such that θ∗ → 1 when

k = k̂). Note as well that the implications for financial stability, as measured by γ (see (16)), are

qualitatively the same as in Section 4.2.

4.4 Comparison of loan guarantee schemes

As shown above, the two guarantee schemes - first-loss or loss-sharing - deliver qualitatively similar

results, although their designs are quite different. While this suggests that our main findings are

robust to how exactly the guarantee may be designed, a natural question that arises is whether one

particular style of guarantee may be more effective in terms of its effects on the bank’s underwriting

effort and costs it entails. In other words, can the government do better by implementing one type

of loan guarantee scheme rather than another?
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In this section, we compare the two guarantee schemes (GS) analyzed in the previous sections,

under the maintained assumption that the guaranteed amount is lost in bankruptcy. For tractabil-

ity, we focus on the case where the bank is well capitalized, i.e., 1 − k ≤ L, so that panic-based

runs do not occur and, as shown above, the introduction of the loan guarantee unambiguously

improves financial stability. Our primary aim is to assess which loan guarantee scheme is more

cost-effective and which, if any, provides a stronger incentive effect for the bank. In what follows,

we use the subscript x when referring to the guarantee scheme in which the government is in a

first-loss position (GSx) and the subscript y to denote the one entailing loss sharing between the

government and the bank (GSy).

When a bank has a level of capital satisfying 1 − k ≤ L, the relevant run thresholds θx and

θy in the guarantee scheme GSx and GSy are given, respectively, by θx = θ − x (see (12)) and

θy = θ−y
1−y (see (20)). To compare the two schemes, we consider the case where the sizes x and y

of the guarantees are set, all things equal, to lead to the same run threshold: θx = θy. Equating

these two, we specify y as the level of y for which the two guarantee schemes implement the same

probability of a run. Hence, y solves
θ − y
1− y

= θ − x,

and is equal to

y =
x

1−max {θ − x, 0}
≥ x,

since θ − x ≡ θx < 1.

For a given size of the guarantee x, the guarantee scheme GSx entails a disbursement for the

government equal to

GDx =

∫ θ−x

0
Rx

(
1− 1− k

L

)
dθ +

∫ 1−x

θ−x
Rxdθ +

∫ 1

1−x
R (1− θ) dθ (21)

= Rx− Rx2

2
−Rx (θ − x)

1− k
L

,

while GSy entails a disbursement equal to

GDy =

∫ θ−x

0
R (1− θ) y

(
1− 1− k

L

)
dθ +

∫ 1

θ−x
R (1− θ) y (22)

=
Ry

2
−Ry (θ − x)

1− k
L

+
Ry

2

1− k
L

(θ − x)2

Comparing GDx and GDy when y = y, we have the following result.
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Proposition 8 For any x > 0, the guarantee scheme in which the government is in a first-loss

position entails a larger disbursement for the government than when the bank and the government

share losses, when both schemes are designed to achieve the same run threshold, but induces the

bank to choose a higher q.

The proposition shows that while the first-loss guarantee scheme, GSx, provides greater in-

centives to the bank through improved bank underwriting standards, it achieves this at a higher

cost. Hence, neither type of scheme unambiguously dominates the other: the cost-minimizing

scheme, GSy, is also not as effective at improving banking sector stability. As such, our findings

here once again reinforce the view that guarantee design features, while perhaps important, are

unlikely to dramatically affect the main qualitative conclusions concerning the stability effects of

loan guarantees.

5 Deposit insurance

Our analysis has focused on guarantees that are directly tied to bank lending, and that insure the

bank’s loan portfolio, or individual loans, against default risk by borrowers. These guarantees are

primarily viewed as stimulative instruments, having been used in response to crises (e.g., Covid-

19) that worsen economic fundamentals and may make banks unwilling to lend, thus possibly

worsening the crisis. However, government guarantees are common in other contexts and, for

banks in particular, are evident in deposit insurance schemes in most countries. Such guarantees

also contain a stimulative component since, in addition to reducing the required interest rate that

must be paid to depositors, they also directly increase stability by reducing depositors’ run risk

(see, e.g., Allen et al., 2018). In this section, we contrast the effect of a deposit guarantee on banks’

risk-taking incentives and financial stability to that of the loan guarantees studied above, and show

that, while sharing some similarities, the ultimate effects of the two types of guarantees are quite

different.

Specifically, consider a deposit guarantee scheme that ensures depositors receive a minimum

repayment δ > 0 if the bank is insolvent and cannot fully repay depositors’ claims. To keep things

simple, we assume that 0 < δ < L < 1 so that the guarantee only needs to be paid when depositors

do not run, making it comparable to the analysis with loan guarantees.18 As above, we start by

18The assumption that the guarantee is only paid at date 2 when depositors do not run is without loss of generality.
As shown in Allen et al. (2018), the run threshold decreases in the guaranteed amount δ even when this is paid in
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solving depositors’ withdrawal decisions. We have the following result.

Proposition 9 The run risk in the presence of deposit insurance depends on the level of bank

capitalization.

a) When 1 − k ≤ L, runs are only triggered by bank insolvency at date 2 and they occur when

θ falls below the threshold θδ(k) = θ(k), as given in (4).

b) When 1−k > L, runs are also driven by panics and they occur when θ falls below the threshold

θ∗δ (q, k, δ) < θ∗(q, k), equal to

θ∗δ (q, k, δ) =
(1− k) r2

R

(qr2 − π1) + δ (1− q)(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) , (23)

where π1 =
∫ n
0 dn+

∫ 1
n

L
(1−k)ndn. The threshold θ∗δ ∈ (θ, 1) decreases with q, k, and δ:

∂θ∗δ (q,k)
∂q < 0,

∂θ∗δ (q,k)
∂k < 0, and

∂θ∗δ (q,k)
∂δ < 0.

In the case of highly capitalized banks, i.e., those with 1−k ≤ L, the run threshold remains the

same as with no guarantees. The reason is that in this case the threshold is derived from the bank’s

insolvency condition as given in (2), which is unaffected by the presence of deposit insurance. By

contrast, for banks with capital such that 1− k > L, the run threshold is now reduced relative to

the case with no guarantees because the transfer δ increases what depositors expect to receive at

date 2, thus reducing their incentives to withdraw prematurely.

Having characterized the effect of the deposit guarantee on the run thresholds, we now move on

to see how it affects banks’ risk-taking decisions. Differently from the loan guarantees, banks do not

directly benefit from the introduction of the deposit insurance as the public funds are transferred

to depositors. However, banks may benefit indirectly from a deposit guarantee as long as it reduces

their exposure to runs, thus also affecting their underwriting incentives, q.

Similarly to above, denote as θRδ = {θδ, θ∗δ} the relevant run threshold, which depends on

whether 1 − k ≷ L. Given θRδ , we can now solve for a bank’s underwriting incentives. Each bank

chooses q to maximize

1

2
q

∫ θRδ

0
max

{
0, Rθ

(
1− 1− k

L

)}
dθ+

1

2
q

∫ 1

θRδ

[Rθ − (1− k) r2] dθ+
1

2
q

∫ 2

1
[R− (1− k) r2] dθ−

cq2

2
.

The interpretation of the terms in the expression for bank profits is as in the case without guarantees.

A bank earns positive profits if there is no run and the project succeeds with probability q. A

the event of a run.
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highly capitalized bank also accrues positive profits in the event of a run as it does not have to

liquidate its entire portfolio to meet depositors’ withdrawals. As a result, it receives the return Rθ

with probability q on the
(
1− 1−k

L

)
share of its portfolio that is not liquidated. Importantly, and

differently from the case of loan guarantees, the presence of deposit insurance does not directly

increase the payoff that the bank obtains at date 2. The bank’s optimal choice of q then solves

1

2

∫ θ∗δ

0
Rθ

(
1− 1− k

L

)
dθ +

1

2

∫ 1

θ∗δ

[Rθ − (1− k) r2] dθ +
1

2

∫ 2

1
[R− (1− k) r2] dθ − cq = 0,

when 1− k ≤ L and

1

2

∫ 1

θ∗δ

[Rθ − (1− k) r2] dθ +
1

2

∫ 2

1
[R− (1− k) r2] dθ −

1

2

∂θ∗δ
∂q

q [Rθ∗δ − (1− k) r2]− cq = 0, (24)

when 1− k > L. We have the following result.

Proposition 10 The introduction of a deposit guarantee scheme induces low capitalized banks to

reduce their underwriting effort, while it has no effect on highly capitalized banks, i.e.,
dq∗δ
dδ < 0 when

1− k > L and
dq
δ

dδ = 0 when 1− k ≤ L.

The proposition shows that banks’ underwriting incentives are affected differently by the deposit

guarantee depending on the level of bank capitalization. Highly capitalized banks, i.e., those for

which 1 − k ≤ L, are not affected by the introduction of the deposit guarantee since the run

threshold θδ does not depend on δ. Hence, it follows immediately that when 1−k ≤ L, the presence

of a deposit guarantee has no effect on the choice of q. By contrast, less capitalized banks that are

subject to panic runs respond to the introduction of the guarantee by taking more risk, i.e., choosing

a lower q. The intuition is that the presence of deposit insurance reduces depositors’ incentives to

run. It also reduces the sensitivity of the run threshold to changes in underwriting effort. Overall,

these effects reduce the benefit the bank obtains when choosing a high underwriting effort. As

a result of the lower underwriting effort, the introduction of the deposit guarantee may have an

ambiguous impact on financial stability. On the one hand, by reducing depositors’ incentives to

run, it increases financial stability. On the other hand, by creating incentives for banks to reduce

their underwriting standards, it weakens the beneficial effect on depositors’ withdrawal decision

and, at the same time, increases the bank’s failure probability.

Overall, the result in Proposition 10 highlights the difference between guarantees introduced

as deposit insurance schemes and those in the form of loan guarantees. In line with the idea that
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insurance mechanisms induce moral hazard considerations, the presence of deposit insurance never

improves banks’ underwriting incentives, and it rather reduces them for poorly capitalized banks,

i.e., those for whom 1−k ≤ L. This stands in contrast with the results obtained in the case of loan

guarantees. Irrespective of the precise type of the scheme, first-loss or loss-sharing, the introduction

of loan guarantees tends to improve banks’ monitoring incentives, with the exception of the case

where guarantees are bankruptcy-protected and banks have very little capital (i.e., k ∈ [0, k̂Py )).

6 Inefficient liquidation and zombie lending

So far we have focused on the effects of loan guarantees on banks’ incentives to monitor borrowers.

In this section, we analyze banks’ incentives to engage in “evergreening”, or in other words inefficient

loan continuation, and study how these interact with run risk and are affected by loan guarantees.

To do so, we modify the model slightly and assume that at date 1 a bank can choose whether to

liquidate its loan portfolio or continue until the final date. Such choice is made after depositors’

withdrawal decision and thus does not interfere with how depositors evaluate their private signals.

However, it may affect depositors’ run decisions as they correctly anticipate the bank’s optimal

liquidation decision.

We start by analyzing banks’ liquidation decision at date 1 in a setting where withdrawing at

t = 1 is not possible so that there are no runs. In this case, each bank compares the loan’s expected

return at date 2 with its liquidation value at date 1, net of depositors’ repayments, and chooses to

liquidate if θ falls below the threshold θBL as given by the solution to

L− (1− k)r2 = q (Rθ − (1− k)r2) ,

which is equivalent to

θBL =
L− (1− q)(1− k)r2

qR
. (25)

The question is whether banks’ liquidation decision is optimal from a social perspective. A

social planner finds it optimal to liquidate the portfolio when θ falls below the threshold θSPL ,

which is given by the solution to

L = qθR,

and is thus equal to

θSPL =
L

qR
. (26)

We have the following result.
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Lemma 1 If withdrawing at t = 1 is not possible, we have that θBL < θSPL . In addition, the

difference θSPL − θBL decreases in k:
∂(θSPL −θ

B
L )

∂k < 0.

The lemma shows that for θ ∈ (θBL , θ
SP
L ] banks have an incentive to engage in evergreening,

that is, to continue projects that instead should be liquidated at date 1. Consistent with empirical

findings (see e.g., Blattner et al., 2021; Schivardi et al., 2021), the extent to which banks evergreen

loans decreases with the level of bank capital.

We now go back to the case where depositors can withdraw at t = 1. This implies that loans

can be liquidated at date 1 for two reasons: either because a run occurs, or because a bank prefers

to liquidate its portfolio prematurely even if no run occurs. To see when either case is relevant, we

compare banks’ liquidation threshold θBL with the run threshold θR = {θ, θ∗}.

Lemma 2 The comparison between θBL and θR depends on the level of bank capital k. In particular,

θBL ≤ θR for k ≤ kL and θBL > θR for k > kL, where kL = 1− L
r2
> 1− L.

The lemma illustrates the relevance of banks’ liquidation policy in the model. When a bank has

little capital and is, thus, exposed to panic runs, it never finds it optimal to liquidate the portfolio

at date 1 when a run does not occur. In other words, given θ∗ > θBL , banks’ liquidation decision is

not relevant for poorly capitalized banks as the fragility stemming from depositors’ run decisions

leads already to more liquidation than what a bank would prefer.

The case for better capitalized banks, who are only exposed to fundamental runs, is different. In

this case, banks with k > kL, and thus θBL > θ, liquidate their portfolios for θ ∈ [0, θBL ]. By contrast,

those with k < kL experience a run for any θ < θBL < θ. It follows that the entire investment is

liquidated for θ < [0, θBL ], while only partial liquidation takes place as a consequence of a run for

θ < [θBL , θ].

Now that we have seen how depositors’ run decisions interact with banks’ liquidation decision,

we can analyze the extent to which evergreening occurs. To this end, we compare the thresholds

θBL and θR = {θ, θ∗} of banks’ liquidation decision and depositors’ run behavior, respectively, with

the liquidation threshold of the planner as given by θSPL in (26). We have the following result.

Lemma 3 In an economy with runs, θSPL ≥ max
{
θBL , θ

}
for 1 − k ≤ L and θ∗ > θSPL > θBL for

1− k > L.
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The lemma shows that liquidation in the baseline economy is always inefficient. Highly capital-

ized banks with 1 − k ≤ L don’t liquidate enough, thus carrying over until the final date projects

that would be optimal to liquidate at t = 1. On the contrary, for low capital banks with 1− k > L,

there is excessive liquidation. For these banks, however, the excessive liquidation stems from de-

positors’ behavior (i.e., panic runs) rather than from excessively stringent decisions by the banks.

The result is illustrated in Figure 5.

Insert Figure 5

6.1 Introducing the loan guarantee

In this section, we analyze the effect of the introduction of a loan guarantee scheme on the incidence

of evergreening. We follow the same steps as in the previous section. Hence, we first identify the

threshold θBLx below which liquidating early is optimal for banks and we then compare it with the

run thresholds θRx = {θx, θ∗x} as given in (12). The cutoff θBLx is equal to the solution to

L− (1− k)r2 = q (R(θ + x)− (1− k)r2) ,

and thus

θBLx =
L− (1− q)(1− k)r2

qR
− x = θBL − x.

It is easy to see that the comparison between θBLx and θRx is as in Lemma 2 so that θRx > θBLx for

banks with k < kL.

We can now study the effect of the introduction of the guarantee on banks’ evergreening incen-

tives.

Proposition 11 In an economy with loan guarantees and full bankruptcy costs:

a) when 1 − k ≤ L, the difference θSPL − max
{
θBLx, θx

}
is larger than in the case without

guarantees;

b) when 1− k > L, there exists a level of capital k̃L ∈ [0, 1− L) such that θ∗x ≥ θSPL for k ≤ k̃L
and θ∗x < θSPL for k > k̃L.

The proposition, which is illustrated in Figure 5, shows that the presence of the loan guarantee

worsens the evergreening problem. For highly capitalized banks, for which 1− k ≤ L, the presence

of the guarantee increases the range of values of the fundamental θ for which there is inefficient loan
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continuation. More importantly, banks exposed to panic runs, with capital k̃L < k < 1 − L, start

evergreening as the loan guarantee reduces the panic run threshold to a value below the threshold

for liquidation of the social planner. Hence, these banks now have an incentive to evergreen loans,

even though they would not have done so in the absence of the loan guarantee. This result is

specific to loan guarantees and would not hold following the introduction of deposit insurance, as

in Section 5. In that case, deposit insurance does not affect the liquidation decision of the bank

and the fundamental run threshold. This implies that banks with high levels of capital would not

change their incentives to evergreen. For banks with less capital that are exposed to panic runs,

the run threshold would decrease but not sufficiently to fall below the social planner’s liquidation

threshold.19

7 Conclusion

In this paper, we presented a model in which banks raise demandable deposits and grant long-

term loans. Banks’ expected return depends on the economy fundamentals, as well as on bank

underwriting efforts. Our focus has been to analyze how the introduction of loan guarantees affects

bank incentives and financial fragility. As with any form of insurance, the introduction of a loan

guarantee reduces depositors’ run probability. The reason is that the guarantee increases the range

in which the bank is able to make the promised repayment to depositors in the final date and, if

the government transfers are bankruptcy-protected, it also increases depositors’ expected payoffs

at the final date. Both of these effects reduce depositors’ incentives to withdraw prematurely, thus

reducing financial fragility.

We also show that, contrary to perceived wisdom, introducing loan guarantees improves banks’

monitoring incentives in many instances. This finding arises both from a direct (positive) effect of

loan guarantees and an indirect effect from the reduction in run probability. The result may differ

only when the loan guarantee is shielded from bankruptcy costs. In this case, the presence of a

loan guarantee reduces the sensitivity of the run threshold to changes in the underwriting effort.

This last effect is negative as it reduces the benefit for the bank from increasing its effort, and it

may dominate when banks are insufficiently capitalized.

In our framework, depositors suffer from potential coordination failures which lead them to

run on their bank. However, we abstract from other considerations in the literature on bank runs,

19Formal results on evergreening in the presence of deposit insurance are available from the authors upon request.
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such as the need to provide liquidity insurance to depositors if they are risk averse. Nevertheless,

we believe our framework, which incorporates credit and run risk, could be extended to study

the interaction of loan guarantees with liquidity provision, the focus of much of the literature on

financial fragility.

In our setting, banks, or bank owners, are the primary decision-makers concerning bank portfolio

choice and rate-setting policies. By making banks the residual claimant, we are able to study the

role of capital for banks, and how that relates to both credit risk and financial fragility, an issue that

for the most part has been absent in the literature. In doing so, however, we take banks’ capital

structures as given. An interesting avenue for future research would be to endogenize banks’ capital

structures and consider how the incentives to raise capital may be driven by the two sources of risk

we highlight here, as well as how government guarantees, such as for loans, influence this choice.
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9 Appendix

Proof of Proposition 1: The proof proceeds in steps. First, we pin down the threshold θ (k),

which corresponds to the upper bound of the lower dominance region, as characterized in the main

text. Second, we characterize the threshold θ∗ (q, k) summarizing depositors’ withdrawal decision

in the intermediate range of fundamentals, i.e., when θ ∈ [θ (k) , θ). Third, we show that for any

1 − k ≤ L, the relevant run threshold is θ (k), while it is θ∗ (q, k) > θ (k) for any 1 − k > L. We

conclude the proof with the comparative statics for the two run thresholds with respect to q, L and

k.

The lower dominance region corresponds to the range of fundamentals θ in which running is a

dominant strategy and, as such, is independent of other depositors’ withdrawal decisions. Given

the existence of bankruptcy costs, a depositor’s expected repayment at date 2 is qr2 > 1 when the

bank is solvent, and 0 otherwise. Thus, the threshold θ(k) corresponds to the level of fundamentals

at which the bank is solvent, i.e., where the bank has just enough resources to repay r2 to all 1− k

depositors. Formally, this corresponds to the solution to

Rθ − (1− k) r2 = 0. (27)

Solving (27) for θ, we obtain condition (4) in the proposition.

For θ ∈ (θ(k), θ), a depositor’s withdrawal decision depends on what other depositors do when

1 − k > L. Assume that all depositors behave according to the threshold strategy s∗. Then, the

fraction of depositors withdrawing at date 1, n (θ, s∗), is equal to the probability of receiving a

signal below s∗ and can be specified as follows:

n (θ, s∗) =


1 if θ ≤ s∗ − ε

s∗−θ+ε
2ε if s∗ − ε < θ ≤ s∗ + ε
0 if θ > s∗ + ε

.

Depositors’ withdrawal decisions are characterized by the pair {s∗, θ∗}, which corresponds to the

solution to the following system of equations:

Rθ

(
1− n (θ, s∗) (1− k)

L

)
− (1− n (θ, s∗)) (1− k) r2 = 0, (28)
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and

qr2 Pr (θ > θ∗| s∗) = 1 Pr (θ > θn| s∗) +
L

(1− k)n (θ, s∗)
Pr (θ < θn| s∗) , (29)

where θn = s∗+ε−2ε L
1−k represents the level of θ for which the bank liquidates the entire portfolio

at date 1 and, thus, is equal to the solution to

n (θ, s∗) (1− k) = L.

Condition (28) identifies the level of fundamentals, θ∗, at which the bank is at the brink of

insolvency at date 2 when n (θ∗, s∗) > 0 depositors run, for given s∗. Condition (29) is depositors’

indifference condition: the LHS represents a depositor’s expected utility from withdrawing at date

2, while the RHS represents the expected utility from withdrawing at date 1. This condition pins

down s∗ given θ∗ (s∗) from (28), so that together the two equations characterize the equilibrium

withdrawal decisions {s∗, θ∗}.

Differentiating (28) with respect to θ and n, we obtain, respectively,

R

(
1− n (θ, s∗) (1− k)

L

)
− ∂n (θ, s∗)

∂θ

[
Rθ

(1− k)

L
− (1− k) r2

]
> 0,

and

−Rθ1− k
L

+ (1− k) r2 < 0,

for any θ > θ (k) since 1 − k > L and ∂n(θ,s∗)
∂θ < 0. Since n (θ, s∗) is a decreasing function of θ,

it follows that the LHS in (28) strictly increases in θ and so does the expected utility at date 2.

Furthermore, rearranging (28) as follows

Rθ − (1− k) r2 − n (θ, s∗)

(
Rθ

(1− k)

L
− (1− k) r2

)
= 0,

it is easy to see that the expression in (28) is always negative when θ ≤ θ (k) for any n (θ, s∗) > 0

and positive for any θ ≥ θ. This also implies that a depositor’s expected utility differential between

withdrawing at date 2 and date 1, which corresponds to the difference between the LHS and RHS

in (29), is also increasing in θ, negative for θ < θ (k) and positive when θ ≥ θ. It follows that a

unique threshold s∗ exists at which a depositor is indifferent between withdrawing at date 2 or at

date 1.

To obtain the expression for θ∗ (q, k) as in the proposition, we perform a change of variable by

defining θ∗ (n) = s∗ + ε (1− 2n). At the limit when ε → 0, θ∗ (n) → s∗ and we denote the run
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threshold as θ∗ (q, k) , which corresponds to the solution to∫ n̂(θ)

0
qr2dn−

∫ n

0
dn−

∫ 1

n

L

(1− k)n
dn = 0, (30)

where n̂ (θ∗) solves (3) and n solves

(1− k)n = L.

The expression in (5) is obtained by rearranging the terms, using θ = (1−k)r2
R , and denoting

π1 =

∫ n

0
dn+

∫ 1

n

L

(1− k)n
dn. (31)

Now, we move on to show that the relevant run threshold is θ (k) when 1− k ≤ L and θ∗ (q, k)

when 1 − k > L. Consider first the case in which 1 − k ≤ L. When 1 − k = L, π1 = 1 and (28)

simplifies to

(1− n (θ∗, s∗)) [Rθ − (1− k) r2] ,

which is positive for θ > θ (k) and negative for θ < θ (k) for any n (θ∗, s∗) < 1. Then, from (29),

it follows that running is optimal when θ < θ (k), irrespective of n (.). Hence, the relevant run

threshold is θ (k) when 1 − k = L. Since θ (k) is decreasing in 1 − k, condition (28) becomes less

binding for any n when 1−k falls below L. This implies that θ (k) is still the relevant run threshold

when 1− k < L.

Consider now the case where 1−k > L. Since (28) is increasing in θ for any θ > θ (k), it follows

that θ∗ (q, k) > θ (k) when 1− k > L.

To complete the proof, we compute ∂θ(k)
∂k , ∂θ

∗(q,k)
∂q , ∂θ

∗(q,k)
∂L , and ∂θ∗(q,k)

∂k . Differentiating (4) with

respect to k, we obtain
∂θ (k)

∂k
= −r2

R
< 0.

Using (5), we compute the effect of q, L, and k on θ∗ (q, k) as follows:

∂θ∗ (q, k)

∂q
=

θ(
qr2 − π1 (1−k)L

)2 {r2(qr2 − π1 (1− k)

L

)
− r2 (qr2 − π1)

}

= − θr2π1(
qr2 − π1 (1−k)L

)2 [(1− k)

L
− 1

]
< 0,

∂θ∗ (q, k)

∂L
=

θ(
qr2 − π1 (1−k)L

)2 {−∂π1∂L

(
qr2 − π1

(1− k)

L

)
+ (qr2 − π1)

(1− k)

L

[
∂π1
∂L
− π1
L

]}
< 0,
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and

∂θ∗ (q, k)

∂k
=

1(
qr2 − π1 (1−k)L

) {∂θ
∂k

(qr2 − π1)− θ
∂π1
∂k

+
θ∗

L

[
∂π1
∂k

(1− k)− π1
]}

< 0,

with ∂π1
∂L =

∫ 1
n

1
(1−k)ndn > 0, ∂π1

∂k =
∫ 1
n

L
(1−k)2ndn > 0 and ∂π1

∂L −
π1
L = − 1

L

∫ n
0 dn. Hence, the

proposition follows. �

Proof of Proposition 2: Using backward induction, we first compute the optimal q and then

solve for r2. Concerning the choice of q, (9) and (10) are obtained by differentiating (6) with respect

to q, setting θR = θ when 1− k ≤ L and θR = θ∗ when 1− k > L, respectively.

We now move to the choice of r2. Consider first the case when 1 − k ≤ L when the relevant

run threshold is θ. Since ∂θ
∂r2

> 0 and a higher r2 reduces bank’s profits when no runs occur, it

is optimal for the bank to choose the lowest possible r2, which corresponds to the solution of (7)

holding with equality.

Consider now the case when 1− k > L. In this case, the above argument does not apply since

∂θ∗

∂r2
< 0 may hold. Therefore, we write the Lagrangian for the bank’s problem as

L = Π|q=q∗ − µ

{
1− 1

2

∫ θ∗

0

L

1− k
dθ − 1

2

∫ 2

θ∗
qr2dθ

}
,

where Π is given in (6). The Kuhn-Tucker conditions are

− 1

2

∂θ∗

∂r2
[Rθ∗ − (1− k) r2]−

1

2

∫ 2

θ∗
q∗ (1− k) dθ +

∂Π

∂q

dq∗

dr2
+

1

2
µ

∫ 2

θ∗
q∗dθ (32)

− 1

2
µ

[
∂θ∗

∂r2
+
∂θ∗

∂q

dq∗

dr2

] [
q∗r2 −

L

1− k

]
,

µ

{
1− 1

2

∫ θ∗

0

L

1− k
dθ − 1

2

∫ 2

θ∗
qr2dθ

}
= 0,

µ ≥ 0.

The derivative dq∗

dr2
is obtained using the implicit function theorem.

When µ = 0, 1− 1
2

∫ θ∗
0

L
1−kdθ−

1
2

∫ 2
θ∗ qr2dθ > 0, i.e., (7) is not binding and r2 solves (11) in the

proposition. Since 1 − k > L and q∗ ≤ 1, r2 must be greater than 1 for (7) to be satisfied. When

µ > 0,

1− 1

2

∫ θ∗

0

L

1− k
dθ − 1

2

∫ 2

θ∗
qr2dθ = 0
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gives the optimal r2, which again is greater than 1 in order for (7) to hold. The Lagrange multiplier

µ is then pinned down by (32) and is equal to

µ =
∂θ∗

∂r2
[Rθ∗ − (1− k) r2] +

∫ 2
θ∗ (1− k) dθ∫ 2

θ∗ qdθ −
[
∂θ∗

∂r2
+ ∂θ∗

∂q
dq
dr2

] [
qr2 − L

1−k

] .
Hence, the proposition follows. �

Proof of Proposition 3: To characterize the run thresholds θx and θ∗x, we follow the same steps as

in the proof of Proposition 1. We start characterizing the range of fundamentals in which running

is a dominant strategy. The threshold θx is the solution to

R (θ + x1)− (1− k) r2 = 0,

and is equal to

θx =
(1− k) r2

R
− x1 = θ − x1.

For any θ ≥ θx, a depositor expects to receive qr2 at date 2 and 1 at date 1 if no depositors run.

Since qr2 ≥ 1, running is never optimal when θ ≥ θx. When θ < θx, a depositor expects to receive

0 at date 2. Thus, it is always optimal to run in this range. Relying on the result of Proposition

1, we have that θx is the run threshold when 1 − k ≤ L. It is easy to see that
∂θx
∂x1

= −1 < 0 and

∂θx
∂k = − r2

R < 0.

We now characterize the run threshold θ∗x in the case 1−k > L. As in the proof of Proposition 1,

we have that θ∗x > θx. The characterization of θ∗x follows the same steps as in the proof of Proposition

1. The only difference in a depositor’s indifference condition is the cutoff n̂x (θ) > n̂ (θ), which is

given by the solution to

R (θ + x1)

(
1− n(1− k)

L

)
− (1− n) (1− k) r2 = 0.

Hence, a depositor’s indifference condition is equal to:∫ n̂x(θ)

0
qr2dθ = π1, (33)

where π1 is given in (31). After a few manipulations, condition (12) in the proposition is obtained.

It follows immediately that θ∗x < θ∗ for any x1 > 0, and ∂θ∗

∂x1
= −1 < 0. Concerning the comparative

statics with respect to k, L and q, since θ∗x = θ∗ − x1, we have that ∂θ∗x
∂k < 0, ∂θ∗x

∂L < 0 and ∂θ∗x
∂q < 0

as in the economy without guarantees. Hence, the proposition follows. �
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Proof of Proposition 4: The guarantee x2 has no effect on qRx = {q
x
, q∗x} as both the bank’s

profits and run thresholds are independent of x2. Consider now the effect of x1. We consider

separately the case when 1− k ≤ L and when 1− k > L. We start from the former.

Differentiating (14) with respect to x1 we obtain

− 1

2

∂θx
∂x1

[
R (θx + x1)− (1− k) r2 −R (θx + x1)

(
1− (1− k)

L

)]
(34)

+
1

2

∫ θx

0
R

(
1− (1− k)

L

)
dθ +

1

2

∫ 1−x1

θx

Rdθ

=
1

2

[
R (θx + x1)

(1− k)

L
− (1− k) r2

]
+

1

2

∫ θx

0
R

(
1− (1− k)

L

)
dθ +

1

2

∫ 1−x1

θx

Rdθ,

since
∂θx
∂x1

= −1. For banks with k such that 1−k = L,
dq
x

dx1
> 0 since the expression above simplifies

to 1
2

∫ 1−x1
θx

Rdθ > 0. The same applies to banks with k = 1 since (34) simplifies to

+
1

2

∫ θx|k=1

0
Rdθ +

1

2

∫ 1−x1

θx|k=1

Rdθ > 0.

For values of k ∈ (1− L, 1), the expression in (34) can be rearranged as

+
1

2

{
R

[
x1

(1− k)

L
+ 1− x1

]
− (1− k) r2

}
. (35)

The expression above is linear in k. Hence, since (34) is linear, positive at k = 1 and k = 1− L, it

follows that it must also be positive for any k ∈ (1− L, 1).

Consider now the case in which 1− k > L. Differentiating (15) with respect to x1, we obtain

− 1

2

∂θ∗x
∂x1

q [R (θ∗x + x1)− (1− k) r2] +
1

2

∫ 1−x1

θ∗x

Rdθ − 1

2

∂2θ∗x
∂q∂x1

q [R (θ∗x + x1)− (1− k) r2]

− 1

2

∂θ∗x
∂q

q
∂θ∗x
∂x1

R− 1

2

∂θ∗x
∂q

qR.

Since ∂θ∗x
∂x1

= −1 and ∂2θ∗x
∂q∂x1

= ∂2θ∗x
∂x1∂q

− 0, the expression above simplifies to

+
1

2
q [R (θ∗x + x1)− (1− k) r2] +

1

2

∫ 1−x1

θ∗x

Rdθ > 0,

and the proposition follows. �

Proof of Corollary 1: From Proposition 3, we know that θRx = θx when 1− k ≤ L and θRx = θ∗x

when 1− k > L. Given that Pr
(
θ > θRx

)
= θRx

2 , ∂γ
R
x

∂x1
> 0 follows directly from dqRx

dx1
> 0, ∂θ

R
x

∂x1
− 1 < 0

and ∂θRx
∂q ≤ 0. �
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Proof of Proposition 5: When 1 − k ≤ L, the relevant run threshold is θPx , which corresponds

to the solution to

R (θ + x1)− (1− k) r2 = 0,

since when θ falls below θPx depositors expect to receive

q
Rx1
1− k

+ 1− q Rx2
1− k

< 1,

and so prefer to run. Hence, θPx = θx holds.

When 1− k > L, the relevant run threshold is θ∗Px . Following the same steps as in in the proof

of Proposition 3, the threshold θ∗Px is pinned down by a depositor’s indifference condition, which

corresponds to expression (18) in the proposition.

To complete the proof, we need to compute the effect of q, k, x1, and x2 on θ∗Px . We do this by

using the implicit function theorem. Denote as f (x1, x2, q, k, θ) = 0 the indifference condition in

(18). Thus,

dθ∗Px
dq

= −
∂f(.)
∂q

∂f(.)
∂θ

,
dθ∗Px
dk

= −
∂f(.)
∂k
∂f(.)
∂θ

,
dθ∗Px
dx1

= −
∂f(.)
∂x1
∂f(.)
∂θ

,
dθ∗Px
dx2

= −
∂f(.)
∂x2
∂f(.)
∂θ

The denominator

∂f (.)

∂θ
=
∂n̂x (θ)

∂θ
q

r2 − Rx1

(
1− n̂x (θ) (1−k)

L

)
(1− n̂x (θ)) (1− k)

 > 0,

since n̂x (θ) = R(θ+x1)−(1−k)r2
R(θ+x1)

(1−k)
L
−(1−k)r2

and so ∂n̂x(θ)
∂θ =

R−Rn̂x(θ) (1−k)L

R(θ+x1)
(1−k)
L
−(1−k)r2

=
R
(
1−n̂x(θ) (1−k)L

)
R(θ+x1)

(1−k)
L
−(1−k)r2

> 0.

Hence, the signs of the effect of q, k, x1, and x2 on θ∗x are given by the opposite sign of the respective

numerators. We have the following:

∂f (.)

∂q
=

∫ n̂x(θ)

0
r2dn−

∫ n

0

Rx2

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

n̂x(θ)

Rx1

(
1− n (1−k)

L

)
(1− n) (1− k)

dn > 0,

∂f (.)

∂k
=
∂n̂x (θ)

∂k
q

r2 − Rx1

(
1− n̂x (θ) (1−k)

L

)
(1− n̂x (θ)) (1− k)

+

∫ n

n̂x(θ)
q

Rx1

(1− n) (1− k)2
dn+

∫ n

0
(1− q) Rx2

(1− n) (1− k)2
dn−

∫ 1

n

L

(1− k)2 n
dn.
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The expression for ∂f(.)
∂k can be rearranged as

∂f (.)

∂k
=
∂n̂x (θ)

∂k
qr2 −

∫ 1

n

L

(1− k)2 n
dn− ∂n̂x (θ)

∂k
q
Rx1

(
1− n̂x (θ) (1−k)

L

)
(1− n̂x (θ)) (1− k)

(36)

+

∫ n

n̂x(θ)
q

Rx1

(1− n) (1− k)2
dn+

∫ n

0
(1− q) Rx2

(1− n) (1− k)2
dn,

where ∂n̂x(θ)
∂k =

R(θ∗P+x1) (1−k)
L
−(1−k)r2

R
(
1−n̂x(θ) (1−k)L

) > 0. From the proof of Proposition 3, we know that θ∗x is

decreasing in k. This derivative can be computed using the implicit function theorem from (33) as

follows:

∂θ∗x
∂k

= −
∂n̂x(θ)
∂k qr2 −

∫ 1
n

L
(1−k)2ndn

∂n̂x(θ)
∂θ qr2

< 0,

which implies that ∂n̂x(θ)
∂k qr2−

∫ 1
n

L
(1−k)2ndn > 0 and so sum of the first two terms in (36) is positive.

A sufficient condition for ∂f(.)
∂k > 0 and so for ∂θ∗P

∂k < 0 is that

∂n̂x (θ)

∂k
q
Rx1

(
1− n̂x (θ) (1−k)

L

)
(1− n̂x (θ)) (1− k)

<

∫ n

n̂x(θ)
q

Rx1

(1− n) (1− k)2
dn,

that is

qRx1
L (1− k)

∂n̂x (θ)

∂k

(
1− n̂x (θ) (1−k)

L

)
(1− n̂x (θ)) (1− k)

− 1

1− k

∫ n

n̂x(θ)

1

(1− n)
dn

 < 0.

Substituting the expression for ∂n̂x(θ)
∂k , we can express the sufficient condition simply as:

1

1− k

[
R
(
θ∗P + x1

) (1−k)
L − (1− k) r2

R (1− n̂x (θ))
−
∫ n

n̂x(θ)

1

(1− n)
dn

]
< 0.

The inequality above holds because the integral
∫ n
n̂x(θ)

1
(1−n)dn is increasing in n and is greater than

1
1−n̂x(θ) and

R(θ∗P+x1) (1−k)
L
−(1−k)r2

R < 1.

Concerning the effect of x1 and x2, we have:

∂f (.)

∂x1
=
∂n̂x (θ∗)

∂x1
q

r2 − Rx1

(
1− n (1−k)

L

)
(1− n) (1− k)

+

∫ n

n̂x(θ)
q
R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn > 0,

and

∂f (.)

∂x2
=

∫ n

0
(1− q)

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn > 0.

Thus, the proposition follows. �
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Proof of Proposition 6: The signs of
dq∗P

dx and dq∗P

dx are given by the signs of the sum of
dq∗P

dx1
+
dq∗P

dx2

and dq∗P

dx1
+ dq∗P

dx2
, respectively.

Consider, first, the case when 1− k ≤ L. The first order condition with respect to q is given by

(14), which implies that the sign of
dq∗P

dx1
is equal to the sign of the expression in (34). As shown in

the proof of Proposition 4, this is always positive. Furthermore, since (14) does not depend on x2,

we have dq∗P

dx2
= 0 when 1− k ≤ L.

Consider now the case when 1− k > L. The first order condition with respect to q is given in

(19). As q∗P is an interior solution, using the implicit function theorem the signs of dq∗P

dx1
and dq∗P

dx2

are equal to the sign of the derivative of (19) with respect to x1 and x2, respectively. Differentiating

(19) with respect to x1 and x2 we obtain

− 1

2

∂θ∗Px
∂x1

[
R
(
θ∗Px + x1

)
− (1− k) r2

]
− 1

2

∂θ∗Px
∂q

∂θ∗Px
∂x1

qR (37)

+
1

2

∫ 1−x1

θ∗Px

Rdθ − 1

2

∂2θ∗Px
∂q∂x1

q
[
R
(
θ∗Px + x1

)
− (1− k) r2

]
− 1

2

∂θ∗Px
∂q

qR,

and

− 1

2

∂θ∗Px
∂x2

[
R
(
θ∗Px + x1

)
− (1− k) r2

]
− 1

2

∂2θ∗Px
∂q∂x2

q
[
R
(
θ∗Px + x1

)
− (1− k) r2

]
(38)

− 1

2

∂θ∗Px
∂q

∂θ∗Px
∂x2

qR,

respectively. To establish their sign, recall that

∂θ∗Px
∂x1

= −1−

∫ n
n̂x(θ)

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] < 0, (39)

and

∂θ∗P

∂x2
= −

∫ n
0 (1− q)

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ q

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] < 0. (40)

From (39), it can be seen immediately that ∂2θ∗Px
∂x1∂q

= 0. Differentiating (40) with respect to q we
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obtain

∂2θ∗P

∂x2∂q
= −
−
∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn+ ∂θ∗P

∂x2

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

]
∂n̂x(θ)
∂θ q

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

]

=

∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ q

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] − 1

q

∂θ∗P

∂x2

= −∂θ
∗P

∂x2

1

1− q
− ∂θ∗P

∂x2

1

q
= −∂θ

∗P

∂x2

1

(1− q) q
> 0.

Hence, we can rearrange (37) and (38) as follows:

−1

2

∂θ∗Px
∂x1

[
R
(
θ∗Px + x1

)
− (1− k) r2

]
− 1

2

∂θ∗Px
∂q

∂θ∗Px
∂x1

qR+
1

2

∫ 1−x1

θ∗Px

Rdθ − 1

2

∂θ∗Px
∂q

qR, (41)

and

−1

2

∂θ∗Px
∂x2

[
1− 1

1− q

] [
R
(
θ∗Px + x1

)
− (1− k) r2

]
− 1

2

∂θ∗Px
∂q

∂θ∗Px
∂x2

qR < 0. (42)

Since the expression in (42) negative, it follows that dq∗P

dx2
< 0.

To compute the overall effect of x on q, we sum up the terms in (37) and (38). After rearranging,

the sign of dq∗P

dx is given by the sign of

− 1

2

[
∂θ∗Px
∂x1

+
∂θ∗Px
∂x2

+
∂θ2∗Px

∂q∂x2
q

] [
R
(
θ∗Px + x1

)
− (1− k) r2

]
+

1

2

∫ 1−x1

θ∗Px

Rdθ − 1

2

∂θ∗Px
∂q

qR

[
∂θ∗Px
∂x1

+
∂θ∗Px
∂x2

+ 1

]
.

Rearranging ∂θ∗Px
∂x1

= q
1−q

∂θ∗Px
∂x2
− 1 +

∫ n̂x(θ)
0

R

(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

r2−Rx1
(
1−n̂x(θ)

(1−k)
L

)
(1−n̂x(θ))(1−k)

 and ∂θ2∗Px
∂q∂x2

= ∂θ∗Px
∂x2

1
1−q −

∂θ∗P

∂x2
1
q , the

expression can be written as

− 1

2


∫ n̂x(θ)
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] − 1

 [R (θ∗Px + x1
)
− (1− k) r2

]
+

1

2

∫ 1−x1

θ∗Px

Rdθ (43)

− 1

2

∂θ∗Px
∂q

qR

−
∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ q

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] +

∫ n̂x(θ)
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

]
 .
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First, given that n > n̂x (θ) and q < 1, one can see that

−

∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ q

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] +

∫ n̂x(θ)
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] < 0,

which implies that the last term in (43) is negative since ∂θ∗Px
∂q < 0.

When x1 = x2 = 0, the fraction in the first bracket in (43) can be rewritten as

∫ n̂x(θ)
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] =

∫ n̂x(θ)
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

Rθ∗Px
(
1−n̂x(θ)

(1−k)
L

)
(1−n̂x(θ))(1−k)

r2

R(θ∗Px +x1)
(1−k)
L
−(1−k)r2

=

∫ n̂x(θ)
0

Rθ∗Px

(
1−n (1−k)

L

)
(1−n)(1−k) dn

Rθ∗Px

(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

[
Rθ∗Px

(1−k)
L − (1− k) r2

]
r2

> 1,

since

∫ n̂x(θ)
0

Rθ∗Px

(
1−n (1−k)

L

)
(1−n)(1−k) dn

Rθ∗Px
(
1−n̂x(θ)

(1−k)
L

)
(1−n̂x(θ))(1−k)

> 1 and
Rθ∗Px

(1−k)
L

r2
− (1− k) = (1−k)

L

[
Rθ∗Px
r2
− L

]
> 1 given that L <

1 − k and Rθ∗Px > (1− k) r2. Furthermore, since ∂2θ∗Px
∂q∂x2

≡ ∂2θ∗Px
∂x2∂q

= 2q−1
(1−q)q

∂θ∗Px
∂x2

, we can infer that

∂θ∗Px
∂q = 2q−1

(1−q)qθ
∗P
x . This implies that

1

2

2q − 1

(1− q) q

∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂x(θ)
∂θ

[
r2 −

Rx1
(
1−n̂x(θ) (1−k)L

)
(1−n̂x(θ))(1−k)

] < 2q

1− q
∂θ∗Px
∂x2

,

Hence, the first and last terms in (43) are negative, while the second one is positive.

Recall that θ∗Px is strictly decreasing in k and we have assumed that there exists a cutoff value

for k, denoted as k̂ > 0, for which θ∗Px = 1 for x = 0. When k = k̂, the expression in (43) is negative

and, by continuity, it continues to be negative around k̂. Similarly, given that when 1− k = L the

entire expression is positive, it follows that in the range k ∈
[
k̂, 1− L

)
, there exists another cutoff

k̂Px , such that dq∗P

dx < 0 for k < k̂Px . Hence, the proposition follows. �

Proof of Proposition 7: The proof proceeds in steps: First, we characterize depositors’ with-

drawal behavior. Then, we solve for the optimal q and characterize the effect of the introduction

of the guarantees on the bank’s monitoring choice. In doing so, we distinguish between the case in
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which the guaranteed amount is lost in bankruptcy and when it is protected from bankruptcy. We

start with the former.

The characterization of depositors’ withdrawal decision follows the same steps as in the proof

of Propositions 3 and 5. Running is a dominant strategy when θ < θy, which corresponds to the

solution to

R [θ + (1− θ) y]− (1− k) r2 = 0,

which gives

θy =
θ − y
1− y

,

with θ = (1−k)r2
R corresponding to the run threshold when there are no guarantees.

When 1− k > L, banks are exposed to panic runs. Following the same steps as in the previous

sections, the condition pinning down θ∗y is∫ n̂y(θ)

0
qr2dn = π1,

where π1 is given in (31) and n̂y (θ) solves

R [θ + (1− θ) y]

(
1− n (1− k)

L

)
− (1− n) (1− k) r2 = 0.

n̂y (θ) = L
r2 −Rθ − kr2 −Ry +Ryθ

(k − 1) (Rθ − Lr2 +Ry −Ryθ)
.

After a few manipulations, we obtain the expression in the proposition,

θ∗y =
θ∗ − y
1− y

,

where θ∗ corresponds to the run threshold when there are no guarantees, as given in (5). As shown

in the proof of Proposition 1, θy and θ∗y are the relevant run thresholds for banks with high capital

(i.e., 1− k ≤ L) and low capital (1− k > L), respectively.

We now move on to the choice of q. When 1− k ≤ L, the bank solves the following problem:

max
q

1

2
q

∫ θy

0
R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ +

1

2
q

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+
1

2
q

∫ 2

1
[R− (1− k) r2] dθ −

cq2

2
,

while when 1− k > L, the objective function is

max
q

1

2
q

∫ 1

θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ +
1

2
q

∫ 2

1
[R− (1− k) r2] dθ −

cq2

2
.
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The first order condition for q is

1

2

∫ θy

0
R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ +

1

2

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+
1

2

∫ 2

1
[R− (1− k) r2] dθ − cq = 0,

when 1− k ≤ L, since
∂θy
∂q = 0 and

1
2

∫ 1
θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ −
∂θ∗y
∂q q

[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
+1

2

∫ 2
1 [R− (1− k) r2] dθ − cq = 0,

(44)

when 1− k > L, with
∂θ∗y
∂q = 1

1−y
∂θ∗

∂q < 0.

To compute the effect of y on the optimal q, we use the implicit function theorem. Thus, the

sign of
dqy
dy is equal to the sign of

∂FOCq
∂y . When 1− k ≤ L,

∂FOCq
∂y is equal to:

1

2

∫ θy

0
R (1− θ)

(
1− (1− k)

L

)
dθ +

1

2

∫ 1

θy

R (1− θ) dθ +
1

2

∂θy
∂y

R
[
θy +

(
1− θy

)
y
](

1− (1− k)

L

)
.

The first two terms are positive, while the last one is negative since
∂θy
∂y = −1−θy

1−y . When 1−k = L,

∂FOCq
∂y simplifies to 1

2

∫ 1
θy
R (1− θ) dθ > 0. As k → 1, then θy → 0 for any y > θ, and so

∂θy
∂y = 0,

while for y < θy and y → 0, the term θy +
(
1− θy

)
y → 0. It follows that

∂FOCq
∂y > 0 for all

k ∈ (1− L, 1), so that
dqy
dy > 0 holds.

Consider now the case when 1− k > L:
∂FOCq
∂y is given by

1

2

∫ 1

θ∗y

R (1− θ) dθ −
∂θ∗y
∂y

[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)

−
∂θ∗y
∂q

qR
(
1− θ∗y

)
−
∂2θ∗y
∂q∂y

q
[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
,

where
∂2θ∗y
∂q∂y =

∂2θ∗y
∂y∂q = 1

1−y
∂θ∗y
∂q < 0. All terms in the expression above are positive except−∂θ∗y

∂q q
∂θ∗y
∂y R (1− y) <

0. Recall that
∂θ∗y
∂y = −1−θ∗y

1−y . Then we can write

−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)−
∂θ∗y
∂q

qR
(
1− θ∗y

)
= −

∂θ∗y
∂q

qR
[
−
(
1− θ∗y

)
+
(
1− θ∗y

)]
= 0,

and it follows that
dqy
dy > 0 when 1− k > L.

We now move on to the case when the guarantee amount is protected from bankruptcy. The

threshold for fundamental runs is still given by θy as specified above. The threshold for panic runs

θ∗Py , instead, now solves:∫ n̂y(θ)

0
qr2dn+

∫ n

n̂y(θ)
q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0
(1− q)

Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn = π1, (45)
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where π1 and n̂y (θ) are as above and n is still equal to L
1−k .

As we perform our analysis for the case in which y → 0, the expression in (45) is increasing in

θ and decreasing in n, so the usual derivations to characterize the panic run threshold θ∗Py apply.

Using the implicit function theorem, we can compute

∂θ∗Py
∂q

= −

∫ n̂y(θ)
0 r2dn+

∫ n
n̂y(θ)

R(1−θ)y
(
1−n (1−k)

L

)
(1−n)(1−k) dn−

∫ n
0

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

< 0,

and

∂θ∗Py
∂y

=

−∂n̂y(θ)
∂y

[
qr2 − q

R(1−θ)y
(
1−n̂y (1−k)

L

)
(1−n̂y)(1−k)

]
− q

∫ n
n̂y(θ)

R(1−θ)
(
1−n (1−k)

L

)
(1−n)(1−k) dn− (1− q)

∫ n
0

R
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

< 0.

Starting from
∂θ∗Py
∂y , we can compute

∂2θ∗Py
∂q∂y =

∂2θ∗Py
∂y∂q as follows:

∂2θ∗Py
∂q∂y

= −

∂n̂y(θ)
∂y

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
+
∫ n
n̂y(θ)

R(1−θ)
(
1−n (1−k)

L

)
(1−n)(1−k) dn−

∫ n
0

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

−
∂θ∗Py
∂y

∂n̂y(θ)
∂θ

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
−
∫ n
n̂y(θ)

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

∂n̂y(θ)
∂θ q

[
r2 −

R(1−θ)y
(
1−n̂y(θ) (1−k)L

)
(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry
(
1−n (1−k)

L

)
(1−n)(1−k) dn

> 0.

When y = 0, the expression above simplifies to

∂2θ∗Py
∂q∂y

= − 1
∂n̂y(θ)
∂θ qr2

∂n̂y (θ)

∂y
r2 +

∫ n

n̂y(θ)

R (1− θ)
(

1− n (1−k)
L

)
(1− n) (1− k)

dn


−
∂θ∗Py
∂y

1

q
,

from which we can see that
∂2θ∗Py
∂q∂y >

∂θ∗Py
∂y when y = 0.

The FOCq is still given by (44), so that the expression for
∂FOCq
∂y when y = 0 is given by

1

2

∫ 1

θ∗Py

R (1− θ) dθ −
∂θ∗Py
∂y

[
Rθ∗Py − (1− k) r2

]
−
∂θ∗Py
∂q

q
∂θ∗Py
∂y

R−
∂2θ∗Py
∂q∂y

q
[
Rθ∗Py − (1− k) r2

]
−
∂θ∗Py
∂q

qR
(
1− θ∗Py

)
.
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Again, all terms are positive except −∂θ∗Py
∂q q

∂θ∗Py
∂y R < 0. When 1− k = L, we know that

∂FOCq
∂y > 0

and so
dq∗Py
dy > 0. Recall that there exists a cutoff k̂ such that θ∗Py → 1 when k = k̂. When k = k̂,

the expression for
∂FOCq
∂y evaluated at y = 0 simplifies to

−
∂θ∗Py
∂y

[R− (1− k) r2]−
∂2θ∗Py
∂q∂y

q [R− (1− k) r2]−
∂θ∗Py
∂q

q
∂θ∗Py
∂y

R.

Since
∂2θ∗Py
∂q∂y >

∂θ∗Py
∂y when y = 0, the expression above is negative, which implies that

dq∗Py
dy < 0.

Hence, there exists a cutoff k̂Py , with k̂ < k̂Py < 1 − L such that
dq∗Py
dy < 0 for k < k̂Py , and the

proposition follows. �

Proof of Proposition 8: Given the expressions for GDx and GDy in (21) and (22) and evaluating

(22) at y = y = x
1−max(θ−x,0) , the expression that determines which guarantee scheme is more costly

is

Rx− Rx2

2
−Rx (θ − x)

1− k
L
≷

Rx

2 (1−max (θ − x, 0))
− Rx

(1−max (θ − x, 0))
(θ − x)

1− k
L

+
Rx

2 (1−max (θ − x, 0))

1− k
L

(θ − x)2 ,

which can be simplified as

Rx

2

[
(2− x)− 1

(1−max (θ − x, 0))
− (θ − x)

1− k
L

(
2− 2− (θ − x)

(1−max (θ − x, 0))

)]
≷ 0. (46)

When (46) equals zero, the two guarantee schemes are equally costly. Note that this is the case for

x = 0 and x = 1. When x = 1, max (θ − x, 0) = 0 and θx = θ−x = 0, so that the expression above

simplifies to R
2 [1− 1] = 0.

We need now to check whether GDx ≷ GDy for any x ∈ (0, 1). Differentiate (46) with respect

to x:

R

2L (xθ − 1)2
(
L− x2θ3 + 2x3θ2 + 2xθ2 − 3x2θ − 2Lx+ 2Lx2θ2 − 2Lx3θ2 (47)

+kx2θ3 − 2kx3θ2 − 4Lxθ + 4Lx2θ − 2kxθ2 + 3kx2θ
)
.

Evaluating (47) at x = 0 gives L
L = 1 > 0, so that, while the difference in the two loan guarantee

schemes is zero at x = 0, it becomes positive as soon as x becomes positive.

We now show that the difference in (46) is concave everywhere, which implies that GDx > GDy

for any x ∈ (0, 1). Start by differentiating (47) with respect to x again to obtain

2

L (xθ − 1)3
(L− (1− k))

(
1 + θ + 3x2θ2 − x3θ3 − 3xθ

)
+ (1− k) . (48)
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Since (xθ − 1)3 < 0, to show that GDx −GDy is concave for any x ∈ (0, 1), we need to show that

the expression in parentheses is positive.

For x = 0, the expression is clearly positive, meaning that the difference GDx−GDy is concave

around x = 0. A sufficient condition for the expression to be positive for any x ∈ (0, 1) is

1 + θ + 3x2θ2 − x3θ3 − 3xθ > 0.

This is equivalent to showing that

1 + θ

xθ
> −

(
3xθ − x2θ2 − 3

)
. (49)

Rewrite the LHS in (49) as 1
xθ + 1

x . From this, we can see that for any x, the value of the LHS is

minimal at θ = 1, and equal to 2
x .

Consider now the RHS in (49). Differentiating it with respect to θ gives:

2x2θ − 3x

This derivative is positive if 2x2θ − 3x > 0 ⇔ 2xθ > 3 ⇔ xθ > 3
2 , which can never happen since

both x and θ are less than 1. Hence, the RHS must be strictly decreasing in θ, and is maximized

at θ = 0. For θ = 0, the RHS equals 3. The same thing is true for x: the RHS is decreasing in x,

so the maximum value the RHS can take is 3, which occurs for either x = 0 or θ = 0.

Now consider the LHS. The lowest value it can take, as a function of x, is 2
x . For this expression

to become smaller than 3, i.e., the largest the RHS can be, we need x > 2
3 . Note now that x can

only be greater than 2
3 if θ is also greater than 2

3 . Since the RHS is decreasing in x and θ, the most

the RHS can be if 2
3 ≤ x ≤ θ is(

2

3

)2(2

3

)2

− 3

(
2

3

)(
2

3

)
+ 3 = 1.8642

which is less than the LHS.

Fix now x = 1. The lowest value that the LHS can take when x = 1 is 2. This is bigger than the

value that the RHS takes when x = 2
3 . Thus, since both the LHS and the RHS are monotonically

decreasing in x, it follows that the LHS is greater than the RHS for any x > 0. This implies, in

turn, that the difference GDx − GDy is concave for any x ∈ (0, 1) and so it is always positive as

stated in the proposition.
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To complete the proof we need to determine the effect of the two guarantees schemes on q. To

do so, we compare FOCq under GSx and GSy. The former is equal to

[c]c+ 1
2

∫ θx
0 R (θ + x)

(
1− (1−k)

L

)
dθ + 1

2

∫ 1−x
θx

[R (θ + x)− (1− k) r2] dθ

+1
2

∫ 2
1−x [R− (1− k) r2] dθ − cq = 0,

(50)

while the latter is equal to

+1
2

∫ θy
0 R (θ + y − θy)

(
1− (1−k)

L

)
dθ + 1

2

∫ 1
θy

[R (θ + y − θy)− (1− k) r2] dθ

+1
2

∫ 2
1 [R− (1− k) r2] dθ − cq = 0,

(51)

since under GSy the bank accrues a (per unit return) on the non-liquidated units equal to Rθ +

R (1− θ) y = R (θ + y − θy) and
∂θy
∂q =

∂θx
∂q = 0.

We now compare (50) and (51) evaluated at y = y so that θy = θx. Given that qx and qy are

interior solutions, for qx > qy, it must be that

1

2

∫ θx

0
R (θ + x)

(
1− (1− k)

L

)
dθ +

1

2

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ +
1

2

∫ 1

1−x
[R− (1− k) r2] dθ

−1

2

∫ θy

0
R (θ + y − θy)

(
1− (1− k)

L

)
dθ − 1

2

∫ 1

θy

[R (θ + y − θy)− (1− k) r2] dθ

∣∣∣∣∣
y=y

> 0.

After a few manipulations, we can rearrange the expression on the LHS of the inequality above as

follows:∫ θx

0
R

(
x− x

1 + x− θ
+ θ

x

1 + x− θ

)(
1− (1− k)

L

)
dθ +

∫ 1−x

θx

R

(
x− x

1 + x− θ
+ θ

x

1 + x− θ

)
dθ

+

∫ 1

1−x
R

(
1− x

1 + x− θ

)
(1− θ) dθ

=

∫ θx

0

Rx2

1 + x− θ

(
1− (1− k)

L

)
dθ +

∫ 1−x

θx

Rx2

1 + x− θ
dθ +

∫ 1

1−x

R

1 + x− θ
(1− θ) (1− θ) dθ > 0.

Hence, since FOCqx > FOCqy , it follows that qx > qy, as desired. �

Proof of Proposition 9: Since δ < 1, the threshold for fundamental runs is the same as in the

case without guarantees. This is due to the fact that when the bank is insolvent depositors receive

δ < 1, but this is not enough to convince them not to run. Hence, for highly capitalized banks,

when 1− k ≤ L, θδ is still given by (4).

Applying the same arguments as in the proof of Proposition 1, for banks with 1 − k > L, the

relevant crisis threshold θ∗δ corresponds to the solution to∫ n̂(θ)

0
qr2dn+

∫ 1

n̂(θ)
qδdn+

∫ 1

0
(1− q) δdn = π1,
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or, equivalently,

q

∫ n̂(θ)

0
(r2 − δ) dn+

∫ 1

0
δdn = π1,

where both n̂ (θ) and π1 are the same as in the case without guarantees. Following the same steps

as in the proof of Proposition 1, we obtain the expression (23) in the proposition.

To complete the proof, we need to compute

∂θ∗δ
∂q

=
(1−k)r2

R (r2 − δ)(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) [1− (qr2 − π1) + δ (1− q)(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

)] (52)

= − (r2 − δ)(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) (θ∗δ − θ) ,

and

∂θ∗δ
∂δ

=

[
(1−k)r2

R (1− q)− (qr2−π1)+δ(1−q)
(qr2−π1 1−k

L )+δ( 1−k
L
−q)

(
1−k
L − q

)]
(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) (53)

= − 1(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) (θ∗δ (1− k
L
− q
)
− θ (1− q)

)
< 0.

Hence, the proposition follows. �

Proof of Proposition 10: When 1 − k ≤ L, the run threshold θδ is not affected by the deposit

insurance δ as shown in the proof of Proposition 9. Hence, q
δ

is not affected by δ.

Consider now the case where 1 − k > L. In this case, the run threshold is θ∗δ as characterized

in (23). We use the implicit function theorem to compute
dq∗δ
dδ . Denote the expression in (24) as

FOCq∗δ = 0. It follows that:

dq∗δ
dδ

= −
∂FOCq∗

δ
∂δ

∂FOCq∗
δ

∂q

.

The denominator
∂FOCq∗

δ
∂q < 0 as q∗δ is an interior solution. Hence, the sign of

dq∗δ
dδ is equal to the

sign of

∂FOCq∗δ
∂δ

= −1

2

∂θ∗δ
∂δ

[Rθ∗δ − (1− k) r2]−
1

2

∂2θ∗δ
∂q∂δ

q [Rθ∗δ − (1− k) r2]−
1

2

∂θ∗δ
∂q

q
∂θ∗δ
∂δ

R

All terms in the expression for
∂FOCq∗

δ
∂δ are negative except the first one. We show next that the

first term is dominated by the second, so that overall
∂FOCq∗

δ
∂δ < 0. To do so, we need to show that

q
∣∣∣ ∂2θ∗δ∂q∂δ

∣∣∣ > ∣∣∣∂θ∗δ∂δ ∣∣∣. Recall that
∂θ∗δ
∂q is given in (52). Differentiating

∂θ∗δ
∂q with respect to δ we get

∂2θ∗δ
∂q∂δ

= A
∂θ∗δ
∂δ
−

−1−A
(
1−k
L − q

)(
qr2 − π1 1−kL

)
+ δ

(
1−k
L − q

) (θ∗δ − θ) > 0,
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with A ≡ (r2−δ)
(qr2−π1 1−k

L )+δ( 1−k
L
−q)

. Since qA = q (r2−δ)
q(r2−δ)− 1−k

L
(π1−δ)

> 1, we have that q
∂2θ∗δ
∂q∂δ >

∣∣∣∂θ∗δ∂δ ∣∣∣.
Thus,

dq∗δ
dδ < 0 and the proposition follows. �

Proof of Lemma 1: Substituting the expressions for θBL and θSPL from (25) and (26), respectively,

it is easy to see that for any 0 ≤ k < 1 and 0 < q < 1, θBL < θSPL holds as

L− (1− q)(1− k)r2
qR

<
L

qR
.

The rest of the Lemma follows since θBL increases with k, while θSPL does not depend on k. �

Proof of Lemma 2: Comparing θLB with θ, we have that

θBL < θ ⇐⇒ r2(1− k) > L.

Given that the LHS in the inequality above is decreasing in k and θBL < θ when k = 1 − L and

θBL > θ when k = 1, there exists a cutoff value kL ∈ (1 − L, 1) solving θBL = θ. Hence, the lemma

follows. �

Proof of Lemma 3: Denote as kSPL the cutoff value of capital for which θ = θSPL . This is equal to

kSPL = 1− L

qr2
≥ 1− L,

for any qr2 ≥ 1. Given that ∂θ
∂k < 0, while

∂θSPL
∂k = 0, it follows that θ > θSPL for k < kSPL and

θ ≤ θSPL for k ≥ kSPL . From Proposition 2, we know that qr2 = 1 when 1− k ≤ L. Hence, it follows

that kSPL = 1 − L and, in turn, θ ≤ θSPL when k ≤ 1 − L, while θ∗ > θ > θSPL when k > 1 − L.

Using the result from Lemma 2 that θBL > θR for k > kL and θBL ≤ θR for k ≤ kL, we obtain the

result in the lemma. �

Proof of Proposition 11: When 1 − k ≤ L, the bank is exposed to fundamental runs only.

The introduction of the loan guarantee reduces θx and θBLx, while it does not affect the planner’s

threshold θSPL . Hence, θSPL −max
{
θBLx, θx

}
strictly decreases with x.

When 1− k > L, the bank is exposed to panic runs and the run threshold θ∗x strictly decreases

with x and k. Since θx < θ and they are both decreasing in k, θSPL = θx when k = kSPLx ≡

1− L
qr2
− x

r2
< 1− L. Hence, since θ∗x > θx, there exists a cutoff value 0 < k̃L < kSPLx < 1− L such

that θSPL ≤ θ∗x when k ≤ k̃L and θSPL > θ∗x when k > k̃L. The cutoff k̃L solves θSPL = θ∗x Hence, the

proposition follows. �
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Figure 1: Depositors’ payoff differential when . The figure shows a depositor's payoff differential between withdrawing at date 2 and at date 
1 as a function of the proportion of depositors withdrawing early, n, when 1- . The payoff differential is independent of n and only depends on 
whether the bank is solvent at date 2. The solid line represents the utility differential when the bank is solvent at date 2, while the dotted one captures 
the utility differential when the bank does not have enough resources to repay depositors even if no one runs.

1

( , )
1

0 1
( )

0 1
Figure 2: Depositors’ payoff differential when > . The figure shows a depositor's payoff differential between withdrawing at date 2 and 
at date 1 as a function of the proportion of depositors withdrawing early, n, when 1- . When 0 ( ), the bank has enough resources to 

1 at date 1. When  < , the bank can still pay 1 at date 1, while fails to repay depositors at date 2. Finally, when < 1, the bank fails to make the 
eeds at date 1.: 



Figure 3: Bank payoff with a first-loss guarantee as a function of the fundamental . The figure shows the bank’s payoff as a function 
of in the presence of a first-loss guarantee of size x ( + ) for < 1 and to for 1 . 

The guarantees x reduces the run threshold 
by the amount .

Figure 4: Run threshold with a first-loss guarantee of size x with full bankruptcy costs. The figure shows that the run threshold in 
the presence of a first-loss guarantee of size x
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Figure 5: Evergreening without and with a first-loss loan guarantee with full bankruptcy costs. Without guarantees, banks with < 1 are 
subject to panic runs and do not engage in evergreening, while banks with > 1 do so both when they are subject to fundamental runs for [1 , ], and when they are not subject to runs for ( , 1]. With a first-loss guarantee with full bankruptcy costs, also banks with capital [ , 1 ) start engaging in evergreening. 


