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Abstract

We evaluate the consequences of oligopolistic behavior for the estimation of gravity
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1 Introduction

Gravity equations have been the predominant tool for analyzing the determinants of bilateral

trade flows since their introduction by Tinbergen (1962) over 50 years ago. In their most

basic form, gravity equations predict that trade between countries is a log-linear function

of the economic mass of the two trading partners and bilateral frictions such as distance

or tariffs. Even in this simple form, gravity equations have substantial explanatory power,

often explaining in excess of 70-80% of the variation in the trade flows between countries.

Starting with Anderson (1979), researchers have shown that gravity equations can be derived

from a number of mainstream theoretical frameworks, allowing a tight link to economic

welfare analysis. Not surprisingly then, gravity equations have become the workhorse tool

for evaluating trade-related economic policies, such as trade agreements, WTO membership

or currency unions.

Despite the rapid progress research on gravity equations has made over the past decades,

existing approaches remain at odds with a key stylized fact about international trade, how-

ever: much of world trade is dominated by a small number of large firms. The classic example

is the market for wide-bodied passenger aircraft which comprises just two firms (Airbus and

Boeing); but the markets of many other tradable goods such as cars, mobile phones or tele-

vision sets are also dominated by a handful of large producers. That is, in the language of

Gaubert and Itskhoki (forthcoming), trade flows are “granular”. Given their size, it seems

likely that such “granular” firms enjoy substantial market power and have incentives to inter-

nalize the effects of their actions on aggregate market outcomes. In this paper, we evaluate

the consequences of oligopolistic behavior for the estimation of gravity equations and propose

modifications to existing frameworks necessary to reconcile the two.

We start our analysis by deriving firm-level gravity equations from a standard CES de-

mand framework. Instead of the usual assumption of monopolistically competitive firms,

however, we introduce oligopolistic competition.1 This leads to the inclusion of variable

markup terms in firm-level gravity equations that depend on firms’ market shares. Market

shares in turn are determined by both firm- and destination-specific variables as well as bi-

lateral trade frictions, so that omitting oligopoly markup terms will bias coefficient estimates

on all other included regressors. Since the relevant markup variation is at the firm-product-

destination-time level, standard approaches such as the inclusion of combinations of fixed

effects are not feasible.

1We focus on quantity competition in the main body of the paper and present results for price competition
in a separate appendix.
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Instead, we show how to adjust trade flows by a suitable correction term to eliminate

markup bias, requiring only information on market shares and demand and supply elasticities.

To estimate the latter, we propose an extension of the well-known Feenstra-Broda-Weinstein

estimation procedure (see Feenstra, 1994; Broda and Weinstein, 2006) that accounts for

market power and can be implemented using data on firm-level market shares and unit

values.

We also analyze the consequences of oligopolistic behavior for the estimation of gravity

equations at more aggregate levels, such as on sector-level trade flows.2 We show that the

presence of firm-level markup terms leads to bias here as well but that a suitable correction

term can again be constructed. This time, the correction takes the form of a destination-

specific Herfindahl-Hirschman index (HHI) for exports multiplied by the aggregate market

share of the exporting country. Intuitively, what matters for the market power of the ex-

porting country is both its overall market share and how that share is distributed among

individual exporters. For example, oligopolistic behavior will be much more pronounced if

the overall market share is accounted for by just one firm rather than a large number of small

producers.

Having shown theoretically how the presence of oligopolistic competition impacts the esti-

mation of gravity equations, we next analyze the quantitative importance of the resulting bias

using both firm- and sector-level data. We pool French and Chinese firm-level export data

to allow the separate identification of bilateral variables such as distance from destination-

specific multilateral resistance and absorption terms. To measure market shares, we combine

our firm-level export data with information on product-level absorption for European coun-

tries from the PRODCOM database. We demonstrate that adjusting trade flows by our

correction term leads to substantial changes in the coefficient on standard bilateral gravity

regressors such as distance, particularly in settings where individual French and Chinese

exporters have significant market shares.

Moving on to the estimation using sectoral data, we to construct theory-consistent correc-

tion terms using data for French and Chinese exports to European markets. Again, correcting

trade flows by these terms can lead to significant changes in gravity equation estimates, al-

though the effects are less pronounced than at the firm level.

Our paper contributes to several strands of the literature on gravity equations. Anderson

(1979), Eaton and Kortum (2002), Anderson and van Wincoop (2003), Chaney (2008) and

2Throughout the paper, we use the terms ‘sector’ and ‘product’ interchangeably. While our empirical anal-
ysis is based on product-level data classified according to the Harmonized System (HS), all of our theoretical
results apply to both sector- and product-level data.

2



Melitz and Ottaviano (2008) show how to derive gravity equations from a number of different

theoretical frameworks. For example, Chaney (2008) derives firm and aggregate gravity

equations from a CES demand framework under monopolistic competition. We demonstrate

how allowing for oligopolistic competition adds additional markup-based terms to otherwise

identical equations. Melitz and Ottaviano (2008) use a setting with monopolistic competition

and linear demand to generate an aggregate-level gravity equation. Similar to our approach,

their framework generates variable destination-specific markups although it does not yield a

firm-level gravity equation. We prefer to work with the more standard CES demand system

as this allows a clean separation of the effects of oligopolistic behavior from markup variability

arising from the shape of the demand function.3

We also contribute to part of the gravity literature that is concerned with obtaining

consistent estimates of parameters of interest, such as distance elasticities. For example,

Anderson and van Wincoop (2003) point out the need to control for multilateral resistance

terms in gravity equations and Redding and Venables (2004) propose to include exporter

and importer fixed effects to this end. Santos Silva and Tenreyro (2006) advocate the use of

Poisson pseudo maximum likelihood (PPML) estimation techniques to address bias arising

from heteroscedasticity in log-linearized models and to allow the inclusion of zero trade flows.

Helpman, Melitz, and Rubinstein (2008) show how to account for the self-selection of firms

into export markets when estimating aggregate gravity equations. We contribute to this

literature by showing how to correct parameter bias arising from oligopolistic behavior by

exporting firms at different levels of aggregation.

Third, within the last decade there has been revived interest in integrating oligopolistic

competition into models of international trade, partially building on earlier contributions by

the strategic trade policy literature (see Brander, 1995). For example, Edmond, Midrigan,

and Xu (2015) study the gains from trade in the oligopolistic competition model of Atkeson

and Burstein (2008). Eckel and Neary (2010) model the consequences of market integration

in a setting with Cournot competition between multi-product firms. Parenti (2018) looks at

the impact of trade liberalization in a model of imperfect competition where a few oligopolis-

tic firms coexist with a monopolistically competitive fringe. Head and Mayer (2019) compare

counterfactual predictions for the effects of freer trade across a number of modeling frame-

works, including CES demand with monopolistic and oligopolistic competition and random

coefficients discrete choice models with oligopolistic price setting. None of these papers in-

vestigates the consequences of oligopolistic behavior for the estimation of gravity equation,

3CES demand also seems a more natural starting point as it generates gravity for both individual firms
and at more aggregate levels.
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which is our key contribution.

Finally, in work concurrent to and independent of ours, Heid and Staehler (2020) propose

an extension of Arkolakis, Costinot, and Rodriguez-Clare (2012)’s formula to evaluate the

gains from trade under oligopoly. To consistently estimate parameters necessary for the

quantification of their model, they derive and estimate an aggregate gravity equation in

oligopoly under the assumption that all industries are symmetric and each country hosts one

firm per industry. Moreover, they have to take key parameters (such as price elasticities) from

the existing literature, although the underlying estimation procedures are inconsistent with

oligopolistic competition. By contrast, the firm- and industry-level gravity equations that we

derive and estimate allow industries to differ in an arbitrary way and each country to host

multiple (heterogeneous) firms. Moreover, we propose an adaptation of existing estimation

procedures to obtain key parameter estimates in a way consistent with oligopolistic behavior.

The rest of this paper is organized as follows. In Section 2, we derive a firm-level gravity

equation from a CES-demand framework with oligopolistic quantity competition. We also

discuss how to deal with selection and heteroscedasticity in estimating our oligopolistic firm-

level gravity equation. Next, we show in Section 3 how to modify the Feenstra-Broda-

Weinstein estimation procedure to account for oligopolistic behavior and obtain demand

and supply elasticity estimates. In Section 4, we derive our correction term for aggregate

product-level trade flows. We also discuss how to adapt the methodology developed by

Helpman, Melitz, and Rubinstein (2008) so as to deal with selection in the estimation of

sector-level gravity under oligopoly. In Section 5, we describe the data sources and present

the empirical results from our firm- and sector-level gravity estimations. In Section 6, we

provide Monte Carlo simulations to evaluate the performance of our oligopoly correction

term for sector-level regressions and that of our methods to deal with heteroscedasticity and

selection. Finally, we conclude in Section 7. Appendix A collects proofs of our theoretical

results. Results obtained when assuming price instead of quantity competition are presented

in Appendix B. Appendix C contains lists of the countries present in our datasets.
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2 Firm-Level Gravity in Oligopoly

We consider a multi-country world with a continuum of sectors, indexed by z. The represen-

tative consumer in country n maximizes

Un =

∫
z∈Z

αn (z) log

 ∑
j∈Jn(z)

a
1

σ(z)

jn q
σ(z)−1
σ(z)

jn


σ(z)
σ(z)−1

dz,

where αn(z) denotes the sector-z expenditure share in country n, Jn (z) is the set of products

available in sector z and country n, and σ (z) denotes the elasticity of substitution between

products in sector z. Consumption of product j in country n is denoted qjn. The utility

shifter ajn captures quality differences or other factors such as brand appeal.

Given these preferences, the direct and inverse demands for product i ∈ Jn (z) in country

n are given by:

qin = ainp
−σ(z)
in Pn(z)σ(z)−1αn(z)En and pin = a

1
σ(z)

in q
− 1
σ(z)

in Qn(z)−
σ(z)−1
σ(z) αn(z)En, (1)

where En is total expenditure in country n, and

Pn(z) ≡

 ∑
j∈Jn(z)

ajnp
1−σ(z)
jn

 1
1−σ(z)

and Qn(z) ≡

 ∑
j∈Jn(z)

a
1

σ(z)

jn q
σ(z)−1
σ(z)

jn


σ(z)
σ(z)−1

are the sector-z CES price index and composite commodity in country n, respectively. From

now on, we focus on a single sector and drop the index z.

Each product j ∈ Jn is offered by a different firm, which may be either a domestic or

foreign producer. Firms compete in quantities in each market n, being able to segment

markets perfectly.4 The profit of the firm offering product i from selling in destination n is

πin = pinqin − Cin(qin),

where Cin(qin) is the firm’s cost of producing and selling output qin. We allow for variable

returns to scale and assume a functional form for costs of

Cin(qin) =
1

1 + γ
cin(τ̃inqin)1+γ =

1

1 + γ
cinτinq

1+γ
in ,

4We focus on quantity competition here and present results for price competition in Appendix B.
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where cin is a firm-destination-specific cost shifter and τ̃in a firm-destination-specific trade

cost that takes the usual iceberg form.5

We assume throughout that the returns-to-scale parameters γ satisfies γ > −1/σ, which

means that the marginal cost of production should not decrease too fast with output. This

(weak) assumption guarantees that all the profit functions we consider will be unimodal.

Unlike in monopolistically competitive markets, firms take into account the impact of

their actions on the CES-composite, Qn, when setting quantities. For what follows, it is

useful to generalize further the degree of strategic interaction between firms by introducing

a conduct parameter, λ (see Bresnahan, 1989): When firm i increases its output qin by an

infinitesimal amount, it perceives the induced effect on Qn to be equal to λ∂Qn/∂qin. Under

monopolistic competition, the conduct parameter λ takes the value of zero, whereas it is

equal to one under Cournot competition. The first-order condition of profit maximization of

firm i in destination n is given by

0 =
∂πin
∂qin

=
αnEn

Q
σ−1
σ

n

a
1
σ
in

σ − 1

σ
q
− 1
σ

in −
σ − 1

σ
λ
∂Qn

∂qin

αnEna
1
σ
inq

σ−1
σ

in

Q
σ−1
σ

+1
n

− C ′in(qin)

=
σ − 1

σ
pin (1− λsin)− C ′in(qin), (2)

where

sin ≡
a

1
σ
inq

σ−1
σ

in∑
j∈Jn a

1
σ
jnq

σ−1
σ

jn

(3)

is the market share of firm i in destination n.

Rearranging terms in equation (2) yields firm i’s optimal markup in destination n:

µin =
1

σ
+ λ

σ − 1

σ
sin (4)

where µin ≡ (pin − C ′in(qin)) /pin is the Lerner index of product i in country n. Under

monopolistic competition conduct (λ = 0), the usual constant markup 1/σ obtains. If instead

λ > 0, then markups are no longer constant and depend positively on market shares. We

will make use of the additional flexibility afforded by the conduct parameter λ in Section 4,

but for now, we assume Cournot conduct and set λ = 1.

Given the optimal markup in equation (4), firm i’s price is pin = cinτinq
γ
in/(1− µin) and

5For one unit of the output to arrive in destination n, the firm needs to ship τ̃in. Note that we define
τin = τ̃1+γin to ease the subsequent notation.
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the value of its sales in market n can be written as:

rin = pinqin =

(
cinτin

1− µin

) 1−σ
1+σγ (

ainP
σ−1
n En

) 1+γ
1+σγ (5)

So far, we have not imposed any structure on trade costs, τin or the taste and cost shock

terms, ain and cin. For comparison with the existing literature and to facilitate the exposition

of our identifying assumptions, we now assume that the two shock terms can be decomposed

log-linearly as log ain = εai + εan + εain and log cin = εci + εcn + εcin, respectively. We further

assume that trade costs can be decomposed as log τin = βXin + ετin where the Xin include

variables with bilateral variation such as (log) distance, common language or dummies for

the presence of trade agreements or currency unions. Obtaining consistent estimates of the

coefficients on these bilateral terms (β) is a key objective of much of gravity equation-based

research.6 Finally, we again assume a three-way decomposition of the trade cost error term,

ετin = ετi + ετn + ητin.

Taking the logarithm of equation (5) yields a firm-level gravity equation of the form

log rin = ξn + ζi + β
1− σ

1 + σγ
Xin +

σ − 1

1 + σγ
log (1− µin) + εin (6)

where ξn and ζi summarize destination- and firm-specific terms and

εin =
1

1 + σγ

[
(1 + γ) εain + (1− σ) εcin + (1− σ) ηin

]
.

Note that under the assumption of monopolistic competition, the markup term involving

µ would be constant and could be subsumed in ζi. In that case, estimation of (6) would

yield consistent estimates of the coefficient on Xin provided that we control for firm and

destination fixed effects (ζi and ξn) and that the usual orthogonality assumptions (explicitly

or implicitly) made in the gravity literature hold.7

In the presence of strategic interaction between firms, however, the markup term will

6See, for example, Baier and Bergstrand (2007) and Rose (2000) on the effects of free trade agreements
and currency unions, respectively, on trade flows.

7Specifically, for least-squares estimation of the log-linearized gravity equation, the orthogonality con-
ditions are E (ητin|Xin) = E (εain|Xin) = E (εcin|Xin) = 0. Note that these assumptions allow for non-zero
correlations between the bilateral variables and taste, production and trade cost shocks working through
the firm- and destination-level-specific components (εai , εan, εci , ε

c
n, ετi and ετn). This is not a problem for

consistent estimation as these components can be controlled for through firm and destination fixed effects. If
the data used to estimate equation (6) contain a time dimension, it is also possible to allow for time-invariant
bilateral elements in the error term which can be captured through bilateral fixed effects as is standard, for
example, in the literature on the trade effects of preferential trade agreements (e.g., Baier and Bergstrand,
2007)
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depend on firms’ market shares and will thus be correlated with the regressors of interest,

Xin; not including this term will lead to an omitted variable bias. For example, we would

expect firms to have lower market shares in more distant markets, ceteris paribus, and hence

to charge lower markups there. This implies that log(1−µin) will be higher in such markets,

leading to a positive correlation between distance and the omitted variable.

Note that this problem is qualitatively different from those arising from other hard-to-

observe gravity components such as expenditure (En), price indices (Pn) or firm-level marginal

costs because these components can be controlled for by firm or destination fixed effects. By

contrast, markups vary at the firm-destination level and the inclusion of bilateral fixed effects

would make it impossible to identify separately the effect of key regressors of interest such

as distance, tariffs or dummy variables for trade agreement.8

Instead, we propose to solve the omitted variable problem by constructing a proxy for

the markup term in (6). Specifically, if we had estimates for σ and γ and data for sin, we

could compute

µ̂in =
1

σ̂
+
σ̂ − 1

σ̂
sin

and estimate

log r̃in ≡ log rin −
σ̂ − 1

1 + σ̂γ̂
log (1− µ̂in) = ξn + ζi + β

1− σ
1 + σγ

Xin + εin. (7)

Given our earlier orthogonality assumptions, using log r̃in instead of log rin as the dependent

variable would yield a consistent estimate of β 1−σ
1+σγ

. Using our estimates for σ and γ would

then allow recovering the parameter of interest, β.9 This approach raises the question of how

to estimate σ and γ. In the next section, we show how to adapt the estimation procedure

by Feenstra (1994) and Broda and Weinstein (2006) to our setting with firm-level data and

oligopolistic competition.

2.1 Estimation Challenges for Firm-level Gravity

Recall that our aim is to obtain consistent estimates of the coefficients on bilateral variables

using either firm or sector level data. Above we showed that after subtracting a markup

correction term from firm export values, we could estimate a standard gravity equation with

a set of firm-product-year and destination-product-year fixed effects as well as the bilateral

8Having a time dimension in the data would not help either because markups would then vary by firm,
destination and time.

9Note the parallel to the literature on trade and quality which uses a similar approach to correct export
values or quantities (e.g., Khandelwal, Schott, and Wei, 2013).
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variables of interest.10

A first issue that arises is how to control for destination-specific fixed effects in a setting

with firm-level export data. If we only have data for exports from a single country, it is

immediately clear that we can no longer separate the impact of bilateral variables from

the fixed effects. For example, if we use information on the exports of French firms only,

standard bilateral variables such as common language become destination-specific as France

is the only origin country in our data. Intuitively, we will not be able to distinguish whether

firms’ exports to a given destination are high because France and the country in question

share a common language or because of other destination-specific factors such as a high price

index or expenditure level. In order to address this issue, we follow Bas, Mayer, and Thoenig

(2017) by combining two datasets on the exports of French and Chinese firms, respectively.

This ensures that there is within-destination variation in the bilateral regressors of interest,

enabling the use of destination fixed effects.

Secondly, we have so far ignored selection issues. In practice, most firms only export to a

small subset of possible destinations for any given product. When estimating (7) in log-linear

form, firm-product-destination observations with zero trade flows drop out. In the presence

of export fixed cost fon > 0 there is selection into exporting in our model: firms will be

more likely to export positive amounts to a given destination if they experience a positive

taste, production or trade cost shock for that destination, potentially creating a non-zero

correlation with the regressors of interest. For example, firms selling in more distant foreign

markets will be more likely to have received a positive shock, allowing them to operate in

this more difficult environment. As consequence,

E (εcin|Xin, rin > 0) 6= 0, E (εain|Xin, rin > 0) 6= 0

Here, we adapt an approach proposed by Bas, Mayer, and Thoenig (2017) and restrict our

estimation sample to the largest three French and Chinese firm in each product category as

measured by overall product-specific exports. The basic idea is that these firms have high

overall exports because they are very productive, produce high-quality products in general

(high εai or εci) or have access to low-cost market access technologies (low ετi ). Such firms will

tend to serve all or at least most available markets, making the destination-specific shocks

less important for market entry decisions. We acknowledge that this is an imperfect solution

10Recall that we dropped the sector/product index (z) for most of our derivations and also ignored the
time dimension to ease exposition. But these dimensions are of course present in our data, and hence price
indices and expenditure levels will vary by destination, product and year, requiring the use of fixed effects at
that level.
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but simulation evidence by Bas, Mayer, and Thoenig (2017) shows that focusing on top

exporters does indeed substantially reduce selection bias

Third, in the presence of heteroscedasticity, the log-linear gravity equation provides in-

consistent coefficient estimates (Santos Silva and Tenreyro, 2006). In particular, we seek a

consistent estimate of E(r̃in|Xin). Recall that r̃in = exp(ξn+ζi+β
1−σ
1+σγ

Xin) exp(εin). Suppose

that Var(exp(εin)) depends on Xin. Then E(εid) is a function of Xid and thus the error term

is correlated with the control variables. A solution to this problem is to include zeros in our

left-hand side variable and estimate (7) in multiplicative form:

E(r̃in|Xin) = exp(ξn + ζi + β
1− σ

1 + σγ
Xim)

Recent computational advances in PPML estimation (e.g., Correia, Guimaraes, and Zylkin,

2019) make it possible to include the large number of fixed effects required in our setting.11

3 Estimation of Supply and Demand Elasticities

Feenstra (1994) and Broda and Weinstein (2006) propose estimators for the elasticity of

substitution, σ, based on the key identifying assumption that shocks over time to import

demand and export supply for a given product are uncorrelated. The equivalent condition

in our context is that E (εainε
τc
i′n′) = 0 for all i, i′ and n, n′, where ετcin = ετin + εcin. That is,

we assume that the firm-destination-level elements of taste and cost shocks are uncorrelated

across firms and markets.

Note that this assumption is consistent with non-zero correlations between overall taste

and cost shocks (i.e., E (aincin) 6= 0 is allowed). In particular, our method allows for a positive

correlation between firm-level costs and quality (εai and εci) which is to be expected if the

production costs of firms producing high-quality products are higher. Likewise, our results

are robust to a positive correlation between destination market quality and cost shocks (εan

and εcn). For example, such a correlation could arise if firms sell higher-quality goods to

high-income markets and incur positive costs of doing so.

We start our derivation by expressing firm-level revenues of firm i in market n in terms

of expenditure shares. From equation (1),

log sin = log

(
pinqin
En

)
= log ain + (1− σ) pin + (σ − 1) logPn.

11We include zero trade flows when estimating (7) on a product-by-product basis in Section 5.3
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Now assume that we observe another firm i′ selling to the same market n. We can then

subtract the logged market share of that firm to eliminate the price index:12

∆f log sin = log sin − log si′n = log ain − log ai′n + (1− σ) (log pin − log pi′n)

If we observe the same two firms in another destination n′, we can compute a double difference

across the two markets as

∆d∆f log sin = (1− σ) ∆d∆f log pin + ∆d∆f log ain,

where ∆f and ∆d denote log differences across firms and destinations, respectively. Note

that double differencing only leaves the firm-destination-specific parts of the taste shocks:

∆d∆f log ain = (εain − εai′n)− (εain′ − εai′n′) .

We next derive a similar supply-side equation. We start by rewriting firm i’s price in

market n as p1+γin =
(
cinτin
1−µin

)
(sinEn)γ. Taking logs yields

(1 + γ) log pin = log (cinτin)− log (1− µin) + γ log sin + γ logEn.

Double differencing across firms and markets as above, we obtain

(1 + γ) ∆d∆f log pin = ∆d∆f log (cinτin)−∆d∆f log (1− µin) + γ∆d∆f log sin,

where the double-differenced cost shock again only contains the parts of production and trade

costs that are firm-destination specific:

∆d∆f log (cinτin) = (ετcin − ετci′n)− (ετcin′ − ετci′n′) .

Note that as per our identifying assumption, the double-differenced cost and taste shocks are

uncorrelated, yielding the following moment condition:

E
(
∆d∆f log ain ×∆d∆f log (cinτin)

)
= 0.

For given σ and γ, we can construct the sample analogues from data on export prices and

12In principle, we could also subtract the average across all firms active in market n. However, we will
argue below that taking differences across individual firms with high market shares is better suited to dealing
with selection problems.
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market shares:

̂∆d∆f log (cinτin) = (1 + γ) ∆d∆f log pin + ∆d∆f log (1− µin)− γ∆d∆f log sin

and

̂∆d∆f log ain = ∆d∆f log sin − (1− σ) ∆d∆f log pin.

The sample analogue of our moment condition is then given by

Ψ (σ, γ) =
1

|Jnn′ |
∑
j∈Jnn′

̂∆d∆f log ain × ̂∆d∆f log (cinτin),

where Jnn′ denotes the set of firms active in the same two markets. Notice that we obtain

one moment condition per country pair. Stacking these up allows to implement a standard

GMM estimator of σ and γ.13

Finally, this still leaves us with a potential selection problem in our GMM estimation

procedure for σ and γ . As a solution, we focus again on the top 3 Chinese and French

exporters (in terms of their overall exports) for any given 6-digit HS product. Finally, in

order to obtain a sufficiently large number of observations for the computation of moments

in our GMM estimation, we restrict the estimates of σ and γ to be identical within 2-digit

HS products.

4 Sector-Level Gravity in Oligopoly

In this section, we study sector-level trade flows in the oligopoly model of Section 2. We first

analyze the equilibrium in a given market using an aggregative games approach (Nocke and

Schutz, 2018b; Anderson, Erkal, and Piccinin, 2020). We then leverage Nocke and Schutz

(2018a)’s approximation techniques to derive a sector-level gravity equation that accounts

for oligopolistic behavior.

Oligopoly analysis in a given destination market. Consider sector z in destination n.

Dropping reference to both z and n to ease notation, we define the market-level aggregator

H as

H ≡ Q
σ−1
σ =

∑
j∈J

a
1
σ
j q

σ−1
σ

j

13In practice, this means that we need to observe a sufficiently large number of firms selling in the same
sector in at least three different markets.
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and firm i’s type Ti as

Ti ≡ a
1
σ
i

(
αE

ciτi

σ − 1

σ

) σ−1
σ(1+γ)

. (8)

Plugging these definitions into equation (2), making use of equation (3), and rearranging, we

obtain:

1− λsi = s
1+σγ
σ−1

i

(
H

Ti

)σ(1+γ)
σ−1

, (9)

where λ is the conduct parameter introduced in Section 2. As the left-hand side is strictly

decreasing in si and the right-hand side is strictly increasing in si, the equation has a unique

solution in si, which we denote S(Ti/H, λ)—the market-share fitting-in function. It can easily

be verified that S(·, ·) is strictly increasing in its first argument and strictly decreasing in its

second.

The equilibrium level of the aggregator, H∗(λ), is pinned down by market shares having

to add up to unity: ∑
i∈J

S

(
Ti
H
, λ

)
= 1. (10)

The uniqueness of the solution follows by the strict monotonicity of the market-share fitting-

in function.

To summarize:

Proposition 1. In each destination market n, and for any conduct parameter λ, there exists

a unique equilibrium in quantities. The equilibrium aggregator level H∗(λ) is the unique

solution to equation (10). Each firm i’s equilibrium market share is s∗i (λ) = S(Ti/H
∗(λ), λ),

where S(Ti/H
∗(λ), λ) is the unique solution to equation (9). From equation (3), firm i’s

equilibrium output is given by

q∗i (λ) = a
− 1
σ−1

i (s∗i (λ)H∗(λ))
σ
σ−1 .

Proof. See Appendix A.1

The first-order approach to sector-level gravity. Let E ( J denote the subset of

exporters from country o that sell in the destination market n. The aggregate exports of

those firms to market n are given by

∑
i∈E

s∗i (λ)︸ ︷︷ ︸
≡s∗o(λ)

× αE.
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We are interested in these aggregate exports when firms compete in a Cournot fashion, i.e.,

when λ = 1. Unfortunately, there is no closed-form solution to s∗o(1). Our approach therefore

entails approximating s∗o(1) at the first order.

As we show in the following, the approximation relies on two versions of the Herfindahl-

Hirschman index (HHI), namely the HHI of all firms selling in the destination market n,

HHIn(λ) ≡
∑
j∈J

(
s∗jn(λ)

)2
,

and the (normalized) HHI of all those exporters in country o that sell in the destination

market n,

HHIon(λ) ≡
∑
j∈E

(
s∗jn(λ)

s∗on(λ)

)2

.

We obtain:

Proposition 2. At the first order, in the neighborhood of λ = 0 (monopolistic competition

conduct), the logged joint market share in destination n of the firms from export country o is

given by

log s∗on(λ) = log s∗on(0) +
σ − 1

1 + σγ

[
HHIn(λ)− s∗on(λ) HHIon(λ)

]
λ+ o(λ).

Proof. See Appendix A.2.

The proposition shows that the logged joint market share of the exporters from country

o differs from the one that would obtain under monopolistic competition by a market power

term that takes account of both the overall concentration in the destination market as well

as the concentration among the country-o exporters.

This result motivates the following approximation:

log s∗on(1) ' log s∗on(0) +
σ − 1

1 + σγ

[
HHIn(1)− s∗on(1) HHIon(1)

]
. (11)

In Cournot oligopoly, the logged sector-level exports from country o to destination market

n are given by

log ron = log(αnEn) + log s∗on(1)

' log(αnEn) + log s∗on(0) +
σ − 1

1 + σγ

[
HHIn(1)− s∗on(1) HHIon(1)

]
, (12)
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where the second line follows from the approximation in equation (11).

4.1 Estimation Challenges for Sector-level Gravity

In order to consistently estimate gravity equations at the sector-level, we need to correct for

selection of high-quality, low-cost firms into high-trade-cost destinations. For estimating firm-

level gravity, we followed Bas, Mayer, and Thoenig (2017) in focusing on the top 3 exporters

from the origin country. This is, of course, not possible when using sector-level data. Here,

we instead adapt the methodology developed by Helpman, Melitz, and Rubinstein (2008)

(from now on HMR) for gravity estimation with heterogeneous firms and constant markups

to oligopoly. To avoid multiplicity of equilibria, we assume that, at the entry stage, firms

behave as under monopolistic competition—and thus take the aggregate price index as given.

Under this hypothesis, firm i from origin o enters market n as long as

πin =
rin
σ
≥ fon

where

rin =

(
τin

1− µ

) 1−σ
1+σγ

ϕ
σ−1
1+σγ

i

(
P σ−1
n αnEn

) 1+γ
1+σγ

and ϕi ≡ a
1+γ
σ−1
i

ci
is firm productivity, summarizing the effect of firm quality and costs, which

is now constrained to be firm-specific (instead of firm-destination specific). We define the

ratio of variable export profits to fixed export costs as Zon = Πon(ϕmax
i )/fon for the highest-

productivity firm from o. Note that we observe positive aggregate exports from o to n as

long as Zon ≥ 1. Moreover, Zon is decreasing in fixed trade costs fon and variable trade costs

τon.

Taking logs, we obtain:

logZon =
σ − 1

1 + σγ
logϕmax

o +
1 + γ

1 + σγ
log(P σ−1

n αnEn)+

+
1− σ

1 + σγ
log τon − log fon +

1− σ
1 + σγ

log(1− σ)

We now put some more structure on the fixed and variable export costs. We assume that

log fon = fo+fn+κχon+εfon with εfon ∼ N(0, σ2
f ) and log τon = τo+τn+γψon+ετon with ετon ∼

N(0, σ2
τ ). Here χon and ψon are observable trade costs, (fo, τo) are origin-specific constants and

(fn, τn) are destination-specific constants. We denote the vector of observable bilateral fixed

and variable trade cost by Xon and we define ρod = E(logZod|Xon) = Pr(Exportson > 0|Xon).
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Then, we obtain the empirical specification for the extensive-margin decision with sector-level

export data as the following Probit model:

ρon = Φ(ξo + ξn + βXon),

where ξo is an origin fixed effect and ξn is a destination fixed effect. This corresponds to the

first stage of the HMR estimation procedure.

In the second stage, firms decide about export quantities and here we maintain again

the assumption of oligopolistic behavior. As explained above, we approximate the aggregate

market share of country o in destination n under oligopoly around the one under monopolistic

competition conduct (S∗od(0)). This variable is given by:

s∗on(0) =


(
σ−1
σ
αnEn

) σ−1
1+σγ P

−σ(1+γ)
1+σγ

n τ
1−σ
1+σγ
on

(∑
i∈Jod ϕ

σ−1
1+σγ

i

)
if Zon > 1

0 otherwise

(13)

In this expression, we need to proxy for average firm productivity of firms from origin o

that are active in destination n, E
[(∑

i∈Jon ϕ
σ−1
1+σγ

i

)
|Zon > 1

]
. This term is correlated with

observable trade barriers due to selection of high-type firms into destinations with higher

trade costs and thus not including it in the regression would lead to biased estimates of our

coefficients of interest.

We proxy for (the log of) this term in a non-parametric way with a polynomial in log Ẑod =

Φ−1(ρ̂od). Finally, we also need to proxy for the unobserved variable trade cost E(ετon|Zon >
1) 6= 0 which is also correlated with observed trade flows. For this, we use the inverse Mills

ratio λon = φ(log Ẑon)/Φ(log Ẑon), which corresponds to the standard Heckman selection

correction.

Putting everything together, we obtain the following sector-level gravity equation for

positive export flows:

log r̃on =ζo + ζn + β
1− σ

1 + σγ
Xon

+ ω1 log Ẑon + ω2 log Ẑ2
on + ω3 log Ẑ3

on + ω4λon + ηon, (14)

where

log r̃on ≡ log ron +
σ̂ − 1

1 + σ̂γ̂
sonHHIon

is the value of the export flows from o to n, purged from oligopolistic market power effects.
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We can thus consistently estimate the intensive-margin trade elasticity β 1−σ
1+σγ

.

5 Empirical Implementation

In this section, we show how to implement our methods for firm- and sector-level gravity

estimations empirically. We first discuss our datasets. We then present basic descriptive

statistics on our data and the GMM estimates for σ and γ. Finally, we run firm and sector-

level regressions with and without oligopoly correction terms and investigate if and under

which circumstances ignoring oligopolistic behavior can lead to quantitatively important

coefficient bias.

5.1 Data Sources

As discussed, we use annual firm-level export data for French and Chinese exporters provided

by the two countries’ customs authorities for the years 2000-2010. In each dataset, we observe

all the products and destinations to which a firm exports, as well as the quantity and value of

the underlying flow. Both datasets record export data at the 8-digit level but we aggregate

this information up to the 6-digit level of the Harmonised System (HS) which is the lowest

level at which the two national classifications are comparable with each other. Because we

observe both values and quantities, we can compute unit values which are a commonly used

proxy for prices in the trade literature.

A final challenge for our firm-level analysis is to obtain information on market shares at a

level of disaggregation that is sufficient to capture meaningful strategic interaction between

firms. To our knowledge, the only suitable database here is Eurostat’s PRODCOM database

which allows computation of absorption at a level at, or close to, HS 6-digit.14 Together

with the information on the value of destination-product-level exports by individual French

and Chinese firms, this allows the computation of market shares at the HS-6digit “plus”

level, where “plus” means that some products have to be aggregated further to make the

classifications of the trade and production data consistent with each other. The downside of

14Absorption is defined as domestic production + imports - exports and thus is the theoretical equivalent
to En in our model. In principle, this information is available at the HS 6-digit level but issues such as
classification changes over time often require aggregation to higher levels. The original classification of the
PRODCOM data is the 8-digit CN classification, which changes almost every year. We apply the procedure
developed by Van Beveren, Bernard, and Vandenbussche (2012) to map the CN classification to an artificial
HS classification, “HS 6digit plus”, that is comparable over time and also compatible with the 6-digit HS
classification. The idea is to aggregate both trade and PRODCOM data as little as possible and as much
as required to guarantee a 1-to-1 mapping between them. See their paper for an in-depth discussion of the
procedure.
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using PRODCOM is that absorption data is only available for approximately thirty European

countries. After combining our data sources, we end up with information on export values

and quantities as well as market shares for 32 European destination markets, approximately

1,800 products and 250,000 exporters for the period 2000-2010.15

For our sector-level gravity regressions, we require product-level data on the value of bilat-

eral exports, absorption data for the computation of market shares and exporter-destination-

product-specific HHIs. To make the estimation sample consistent with our firm-level regres-

sions, we aggregate our firm-level data at the 6-digit HS level and use the firm level data to

compute exporter HHIs.16 Finally, we source information on bilateral distance from CEPII.

5.2 Descriptive Statistics

The key determinants of our oligopoly correction term are firm-level market shares as well

as estimates for demand elasticities (σ) and returns to scale (γ). The first line of Table 1

presents information on the firm-level market shares for the French and Chinese exporters

in our firm-level dataset. The average market share across the approximately 14 million

firm-destination-product-year combinations in our data is small at 0.4% and the median is

even smaller (around 0.01%). At the 95th percentile, the firm-level market share is 1.12%.

Clearly, the typical firm in our data does not enjoy much market power.

However, this does not necessarily imply that correcting firm-level exports for oligopoly

forces will not matter quantitatively, as estimation results could be substantially biased by

a small number of exporters with high market shares. The remaining columns of Table 1

focuses on such firms. The second line begins by showing descriptive statistics for the top

exporters (i.e., the French and Chinese firms with the largest total export values for a given

6-digit product and year). The average top-exporter market share is around 6%, substantially

larger than the average exporter’s market share. Moreover, at the 95th percentile the top

15Possibly because of measurement issues in PRODCOM, we occasionally observe cases where absorption
is smaller than a firm’s exports to a given market, resulting in market shares larger than one; in such cases,
we winsorize market shares to 0.95.

16Researchers may not generally have firm-level datasets for several countries available. As an alternative,
we have used PRODCOM for absorption data and combined these with product-level trade data from Eu-
rostat’s COMEXT database. For the exporter HHIs, we have used the World Bank’s Exporter Dynamics
Database (EDD) which provides destination-specific Herfindahl indices computed from firm-level export data
for 48 exporting countries at the HS 2-digit level. Given that this is a relatively high degree of aggregation
(90 aggregated manufacturing products), we have also experimented with computing ‘pseudo-HHIs’ based
on 8-digit import data from COMEXT. While this data is still at the product level rather than the level
of individual exporters, it is highly disaggregated (ca. 9,600 different products). We thus need to make
the assumption that each origin-destination-product observation originates from a single firm, allowing us
to compute HHIs based on these data. The results with these alternative datasets were similar to the ones
based on aggregated firm-level information. (Results are available upon request).
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firm enjoys a market share of almost 30%. In the third column we show the market shares

for the sample of of the top 3 exporters (i.e., the largest three French and Chinese firms in

terms of total export values for a given 6-digit product and year). The mean market share

in this sample is around 3.9% and at the 95th percentile it equals around 18%. In the final

column, we present the cumulative market shares of the top-3 exporters. For them, the

average cumulative market share is equal to 7.30% and at th 95th percentile, they have a

total market share of 33.4%. Thus, there is a small set of exporters with large market shares

in most markets.

Table 1: Summary Statistics for French and Chinese Firm-Level Market Shares

All Top Top 3 Top 3
Exporters Exporters Exporters Exporters

(Cumulative)
Mean 0.40% 6.00% 3.88% 7.30%
5th pctile 0.00007% 0.01% 0.006% 0.03%
10th pctile 0.0004 0.03 0.02% 0.09%
Median 0.01% 1.21% 0.65% 2.05%
90th pctile 0.44% 15.72% 9.20% 19.36%
95th pctile 1.12% 28.96% 18.04% 33.44%
Observations 14,009,005 276,718 708,409 708,409
Note: annual Chinese and French firm-level market share data for period 2000-
2010.

The picture that aggregate exports are very concentrated across a few firms is confirmed

by Table 2, which presents summary statistics on exporter HHIs and sectoral aggregate

market shares of Chinese and French firms for our HS 6-digit product-level sample.The mean

exporter HHI is 0.55 and at the 90th percentile a single firm accounts for the total market

share of each country. Moreover, the mean aggregate market share of China and France

in each destination is around 9% and at the 90th percentile the market share reaches 24%.

Thus, in many cases, Chinese and French firms have substantial market power in individual

markets. The third column of Table 2 provides summary statistics for the sector-level markup

correction term (computed for σ = 5 and γ = 0). It has a mean of 0.18 and reaches from 0

at the 10th percentile to 0.4 at the 90th percentile.

Table 3 shows descriptive statistics for our estimates of σ and γ. As discussed, we con-

strain coefficient estimates to be identical within 2-digit HS codes to guarantee a sufficient

number of observations underlying each estimate. For the average and median sector, we

estimate mildly decreasing returns to scale of γ = 0.34 and γ = 0.19, respectively. For our

price elasticity estimates, we find a mean of 5.39 and a median of 3.74. Reassuringly, these
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Table 2: Summary Statistics for Sector-Level Market Shares and Exporter HHIs

Exporter Destination Markup
Herfindahl Market Share Correction Term

Mean 0.55 9% 0.18
5th pctile 0.08 0.01% 0.0004
10th pctile 0.13 0.06% 0.001
Median 0.50 2% 0.03
90th pctile 1 24% 0.41
95th pctile 1 42% 0.82
Note: data for 6-digit HS sectors. Sample 2000-2010. Markup correction term
computed for σ = 5, γ = 0.

numbers are very similar to estimates at comparable levels of aggregation estimated in the

literature (e.g., Broda and Weinstein, 2006).

Table 3: Price Elasticities and Returns-to-Scale Estimates – Cournot Competition

σ γ
Mean 5.39 0.34
25th Percentile 2.22 0.03
Median 3.74 0.10
75th Percentile 7.50 0.30
Min 1.01 -0.13
Max 26.07 4.46
Standard Deviation 4.07 0.69
HS 2-digit products 78 78
Note: Table shows descriptive statistics for estimates of σ and γ. Estimates
computed using 6-digit HS firm-level information but constrained to be identi-
cal within 2-digit HS products.

5.3 Firm-Level Gravity Estimation Results

We now turn to the estimation of our firm-level gravity equations with and without correction

for oligopoly bias. In all firm-level regressions, we consider the top-3 exporters of any given

6-digit product as potential exporters of that product to any given destination and fill in

the zero export flows if they do not export the product to a destination. As a first step,

we pool across all firms in our data and estimate equations 6 and 7 via PPML using a full

set of firm-product-year and destination-product-year fixed effects. We aim at identifying

the intensive-margin trade elasticity given by β 1−σ
1+σγ

. As our main regressor of interest, we

include bilateral distance. Note that because our destination countries are all in Europe,

there is insufficient variation to include other commonly used indicators such as dummies for
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common language, or policy-related variables, such as membership in a free trade agreement

and bilateral tariffs.17

Table 4: Firm-Level Gravity Estimates, σ = 5 and γ = 0.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.518*** -0.874*** -0.275*** -0.232***

(0.220) (0.021) (0.015) (0.014)

β̂distance 0.375 0.218 0.069 0.058
Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Cournot
model with σ = 5 and γ = 0. Standard errors in brackets, clustered at the destination-
year level.

Table 5: Firm-Level Gravity Estimates, σ = 5.39 and γ = 0.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.522*** -0.874*** -0.279*** -0.232***

(0.221) (0.0210) (0.015) (0.014)

β̂distance 0.354 0.199 0.064 0.053
Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Cournot
model with mean of estimated σ and γ = 0. Standard errors in brackets, clustered at
the destination-year level.

Table 4 presents the results using σ = 5 and γ = 0 (CRS) for constructing the markup

correction term. Column (1) presents the PPML estimate for the specification including the

markup correction term, while column (2) presents the PPML estimate without the markup

correction. As becomes immediately, clear, without the markup correction term, the distance

coefficients is heavily downward biased in absolute magnitude. While the point estimate in

column (1) is -1.52, it is -0.87 in column (2). This confirms our theoretical insight that

the distance coefficient suffers a substantial attenuation bias because firms systematically

17The destination countries in our sample were either already EU member states or had implemented free
trade agreements with the EU before 2000 and therefore had no tariffs on EU imports. By contrast, China
did not have any FTAs with countries in our sample before 2010 and EU external tariffs for imports from
China only had industry variation. Thus, there is no variation in the FTA dummy or in tariffs that is not
absorbed by our firm-product-year dummies. Likewise, there is insufficient variation to include an indicator
common language which is identified only for the pair France-Belgium and France-Switzerland.

21



Table 6: Firm-Level Gravity Estimates, σ = 5.39 and γ = 0.34.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.201*** -0.874*** -0.248*** -0.231***

(0.118) (0.0210) (0.0142) (0.0136)

β̂distance 0.792 0.577 0.160 0.149
Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Cournot
model with mean of estimated σ and γ. Standard errors in brackets, clustered at the
destination-year level.

reduce their markups in markets where they face higher variable trade costs and thus have

lower market shares. As a consequence, firm-level export values decrease by less than they

would have decreased under constant markups. The point estimate on distance corresponds

to (σ − 1)β̂distance, where β̂distance is the fundamental trade cost elasticity of distance. Given

values of σ equal to 5 and γ equal to zero, the implied values for this coefficient are 0.354 in

column (1) and 0.199 in column (2), implying a downward bias in coefficient magnitude of

around 44 percent. Note that while distance is not a policy variable, a very similar attenuation

bias would arise for any iceberg-type variable, such as ad-valorem tariffs or transport costs.

In columns (3) and (4) we report estimates for the log-linear versions of equations (7) and

(6) with OLS estimated on the positive trade flows. In both cases, the distance coefficient is

heavily down-ward biased due to the heteroscedasticity bias.

In Table 5 we report results for setting σ equal to its mean estimated value (σ = 5.39)

when computing the markup correction term, while keeping γ equal to zero. Results remain

very similar to the previous specification, which the exception of the estimate in column

(3), where the estimate of the distance coefficient in the log-linear OLS specification with

the markup correction term now turns significantly negative. Finally, in Table 6, we report

results using the mean estimated σ and γ. The distance coefficient is now a bit smaller in

absolute magnitude (-1.2), but still substantially larger than without the markup correction

term, implying a coefficient bias of around 30%. The implied fundamental trade cost elasticity

of distance is larger in this case and corresponds to 0.79 in the specification including the

markup correction term, compared to 0.58 without the correction. The reason is that we

estimate significant decreasing returns to scale for the average sector (γ = 0.34), implying

that marginal costs increase in the exported quantity. Thus, given the actually observed trade

value, markups decrease more for more distant markets than with constant marginal costs.
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Correspondingly, for a given export value, trade costs must be more sensitive to distance if

we hold markups constant.

So far, we have reported pooled estimates and constrained the coefficients to be the same

across products. We now turn to an estimation product by product, since oligopolistic market

structure is plausibly more important for some products compared to others and thus the

markup bias may also vary across products. We illustrate the importance of oligopoly bias at

the product level by estimating firm-level gravity equations separately for each of the 78 HS 2-

digit product in our data, the level of variation of σ and γ (pooling observations across 6-digit

products within a given HS 2 product). Table 7 reports summary statistics for the median

coefficient estimates across products with and without the correction for oligopoly bias for

all three cases (σ = 5, γ = 0, σ estimated, γ = 0, (σ, γ) estimated). In all specifications, the

median point estimate on distance is much larger when including the correction term. For

our baseline specification with σ = 5 and γ = 0, the median point estimate of the distance

coefficient is -1.35, which is close to the pooled estimate. By contrast, without the markup

correction the median distance coefficient is only -0.51. The absolute percentage bias in the

coefficient, defined as abs(
βdistance,w/corr−βdistance,wo/corr

βdistance,w/corr
), varies across sectors. For a product

at the 10th percentile, this bias is around 10%, but it increases to 160% for a product at

the 90th percentile. Thus, for some products the oligopoly bias in the distance coefficient is

much larger than the pooled estimates would suggest.

Table 7: Firm-level Gravity Estimates by 2-digit Product

Median est coefficient σ = 5, γ = 0 σ est, γ = 0 σ, γ est
log distance w/ corr -1.347 -1.796 -0.740
log distance w/o corr -0.508 -0.065 -0.081

β̂distance w/ corr 0.337 0.779 0.445

β̂distance w/o corr 0.127 0.013 0.045
abs. pct. bias (10th pctile) 10% 37.7% 8%
abs. pct. bias (median) 95.6% 100% 95.8%
abs. pct. bias (90th pctile) 160% 122% 165%
Note: Firm-level data. Coefficients by 2-digit HS product for top 3 exporters.
Cournot model.

5.4 Sector-Level Gravity Estimation Results

While firm-level trade data are increasingly becoming available to researchers, in many cases

gravity estimations are still based on more aggregate types of data, such as sector-level trade

flows. Of course, the issue of coefficient bias due to oligopolistic behavior does not go away
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at this level as aggregate exports are simply the sum of underlying firm-level exports. In

this section, we use the HHI-based correction term proposed in Section 4 to investigate the

quantitative importance of oligopoly bias for sector-level regressions. Like at the firm level,

we want to identify the intensive-margin trade elasticity β 1−σ
1+σγ

and thus we expect to obtain

similar coefficient estimates. (Observe that the aggregate trade elasticity is not constant in

our model.18)

We first present results for the pooled regressions. We balance the dataset by adding

all zero trade flows at the 6-digit product-destination-year level. For computational reasons,

we focus on the year 2010. (Similar results are obtained for other years). First, we run

regressions with and without the markup correction term but without correcting for selection

into exporting. As we have shown in Section 4, controlling for selection is in theory necessary

to correctly identify of the intensive-margin elasticity. We thus regress bilateral sector-level

exports on bilateral distance as well as product-origin and product-destination fixed effects.

log r̃on = ζo + ξn + β
1− σ

1 + σγ
Xon + ηon

Table 8 reports the results for σ = 5 and γ = 0. In columns (1) and (2), we apply

the PPML estimator, which allows us to include the zeros in bilateral trade flows, while in

columns (3) and (4) we apply the OLS estimator on positive trade flows. In principle, we

expect to recover the same elasticity as at the firm level. However, the PPML coefficient

estimates on (log) distance in columns (1) and (2) are much smaller in absolute magnitude:

-0.26 without the markup correction term and -0.19 with the correction term. Thus, the non-

random nature of the zeros leads to a heavy attenuation bias in the PPML estimates. The

OLS results presented in columns (3) and (4) estimated on the selected sample of positive

trade flows instead look more reasonable: the coefficient on distance is -1.12 without and -1.26

when including the markup correction term, which is somewhat smaller than the firm-level

estimates. Thus, there is plausibly a selection bias in the OLS estimates, which combines

several opposing effects: at the extensive margin, we see fewer firms exporting to more

distant markets and thus exports should fall more with distance; at the selection margin,

the surviving firms are positively selected and thus exports should fall less with distance.

Moreover, also at the sector level, a significant markup bias arises, even though the bias in

coefficient magnitudes from not including the markup correction term seems smaller than at

18In the absence of Pareto-distributed productivity even with constant markups the aggregate trade elas-
ticity varies along the firm-size distribution and does not usually have a closed-form solution (Bas, Mayer,
and Thoenig, 2017). In addition, in our model markups for any given product vary at the firm-destination
level.
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the firm level (around 10%).

Table 8: Sector-level Gravity Estimates without Controlling for Selection

Regressor PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.263 -0.186 -1.128*** -1.260***

(0.168) (0.147) (0.195) (0.216)
Observations 107,064 107,064 66,563 66,563
R-squared 0.314 0.285
Product-origin FE YES YES YES YES
Product-dest. FE YES YES YES YES
Note: Sector-level data. Cournot model with σ = 5 and γ = 0. Standard errors
clustered at destination level

We now apply the HMR methodology in order to correct for selection into exporting in

addition to the markup bias and to obtain correct estimates of the intensive-margin trade

elasticity. To apply the HMR method, we first estimate the propensity to export (extensive

margin) using a Probit estimator. We include 2-digit-product-origin and 2-digit-product-

destination fixed effects.19 To proxy for fixed market entry costs between origin o and desti-

nation n, we also follow HMR: we add dummies for the business startup time and the startup

cost being above the sample median for both the origin and the destination country. By as-

sumption, these variables only impact on the fixed export cost but not on the iceberg-type

trade costs and thus exclusively affect firms’ entry decision but not their quantity choice con-

ditional on entry. The source for these variables is the Worldbank’s Doing Business Database.

We report results for the first-stage Probit regression in Table 9. As expected, the dummies

for high business startup cost and long business startup time are significantly negatively

associated with the probability to export at the sector level. Moreover, distance also affects

the sectoral export propensity significantly negatively.

We next turn to the second-stage HMR results, which refer to the intensive-margin export

decisions at the sector level. Remember that the second-stage regression is specified as

log r̃onz =ζoz + ξnz + β
1− σ

1 + σγ
Xon

+ ω1 log Ẑonz + ω2 log Ẑ2
onz + ω3 log Ẑ3

onz + ω4λonz + ηonz

19Using 6-digit product-origin and product-destination fixed effects is not computationally feasible with
the Probit estimator. However, results using a linear probability model indicate hardly any changes in
the point estimates when adding these more detailed fixed effects compared to 2-digit product-origin and
product-destination fixed effects.
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Table 9: Sector-level Gravity Estimates – Export Propensity

Regressor Export > 0
log distance -0.420*
high startup cost -1.340***
long startup time -2.102***
Observations 107,064
Product-origin FE YES
Product-dest. FE YES

Note: Sector-level data. HMR first-stage Probit regression of propensity to
exporting. Standard errors clustered at destination level in parentheses

Here, r̃onz corresponds to the markup-corrected export revenue of origin country o in desti-

nation n in sector z. Xon is log distance and Ẑonz is the predicted export-profit-to-fixed-cost

ratio for the highest-type firm. We include a second or third-order polynomial in this vari-

able to proxy for the exporting firms’ type mix in each origin-destination-sector combination.

Finally, λonz is the inverse Mills ratio, which controls for unobserved variable trade costs. As

usually, we first report results for this regression when the correction term is computed with

σ = 5 and γ = 0 (CRS) in Table 10. In columns (1) and (2), we report results without

and with the markup correction term, but only including the inverse Mills ratio (columns

labeled Heck), in columns (3)-(6) we instead implement the full HMR procedure. Columns

(3) and (4) include a quadratic function of Ẑonz, while columns (5)-(6) include a third-order

polynomial. In all three cases, the coefficient on distance in the specification including the

markup correction term is significantly larger in magnitude compared to the one without

markup correction. In our preferred specifications (columns (4)-(6)), the coefficient on log

distance is around -1.284, compared to -1.15 without correction, corresponding to around

10% downward bias in absolute magnitude without correction. The corresponding point

estimates of the fundamental trade cost elasticity to distance are 0.32 vs. 0.29. Finally,

note that the inverse Mills ratio and the polynomial terms in Ẑonz have the expected signs in

columns (4)-(6) and are mostly significant. Lower unobserved trade barriers (a higher inverse

Mills ratio) and higher average types both increase the value of sectoral exports to a given

destination.

In Table 11, we repeat the same specifications, using the mean estimated σ of 5.39 and

γ = 0 to compute the markup correction term. Not surprisingly, our results are hardly

affected by this modification. Finally, in Table 12, we use both the mean estimates of σ

and γ to correct for oligopolistic markups. While the point estimates on log distance hardly

change, the estimated fundamental distance coefficient does become significantly larger in this
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case. The reason is that we estimate significantly decreasing returns to scale for the average

sector (γ = 0.34, implying that marginal costs increase in the exported quantity. Thus, given

the actually observed trade value, markups decrease more for more distant markets than

with constant marginal costs. Correspondingly, for a given export value, trade costs must be

more sensitive to distance if we hold markups constant.

Table 10: Sector-level Gravity Estimates – intensive margin, σ = 5, γ = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.327*** -1.151*** -1.284*** -1.150*** -1.284***

(0.198) (0.220) (0.190) (0.209) (0.193) (0.212)
inv mills -0.121 -0.130 0.678*** 0.799*** 0.639** 0.805**

(0.165) (0.182) (0.169) (0.192) (0.309) (0.344)

log Ẑ 0.907*** 1.067*** 0.736 1.097
(0.265) (0.293) (1.305) (1.396)

log Ẑ2 -0.103* -0.125** -0.0297 -0.137
(0.0565) (0.0621) (0.534) (0.567)

log Ẑ3 -0.0102 0.00176
(0.0693) (0.0732)

β̂distance 0.297 0.331 0.288 0.32 0.288 0.321
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.275 0.304 0.277 0.304 0.277
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Cournot model with σ = 5 and γ = 0. Standard errors clustered at
destination level in parentheses.

Finally, we report regression results for estimating the sector-level regressions separately

by 2-digit sector (pooling over 6-digit products within a given 2-digit product), which is the

level of variation of σ and γ. In Table 13 we report the median point estimates for the

distance coefficients and the implied fundamental trade cost elasticity of distance with and

without including the markup correction. In addition, we report the absolute percentage

bias in the coefficient point estimates for a sector at the 10th percentile, at the median and

at the 90th percentile of the bias. Again we find that without oligopoly correction there

is a downward bias in the distant coefficients. While the bias is relatively small in the

median sector, it increases to around 40% at the 90th percentile. Moreover, the size of the

coefficient bias increases systematically with the exporter HHI index. When running the bias

on country-pair fixed effects and the exporter HHI, we find a very strong positive correlation:

pct.biass = αod + 0.794∗∗∗ ×HHIods

Thus, in sectors with highly concentrated exports, sector-level gravity estimates are heav-
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Table 11: Sector-level Gravity Estimates – intensive margin, σ = 5.39, γ = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.341*** -1.151*** -1.297*** -1.150*** -1.297***

(0.198) (0.222) (0.190) (0.211) (0.193) (0.214)
inv mills -0.121 -0.131 0.678*** 0.810*** 0.639** 0.822**

(0.165) (0.184) (0.169) (0.194) (0.309) (0.348)

log Ẑ 0.907*** 1.083*** 0.736 1.132
(0.265) (0.295) (1.305) (1.405)

log Ẑ2 -0.103* -0.127** -0.0297 -0.148
(0.0565) (0.0626) (0.534) (0.570)

log Ẑ3 -0.0102 0.00293
(0.0693) (0.0736)

β̂distance 0.277 0.313 0.268 0.302 0.268 0.302
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.272 0.304 0.274 0.304 0.274
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Cournot model with mean of estimated σ and γ = 0. Standard errors
clustered at destination level in parentheses.

Table 12: Sector-level Gravity Estimates – intensive margin, σ = 5.39, γ = 0.34
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.243*** -1.151*** -1.202*** -1.150*** -1.202***

(0.198) (0.206) (0.190) (0.197) (0.193) (0.200)
inv mills -0.121 -0.124 0.678*** 0.725*** 0.639** 0.703**

(0.165) (0.171) (0.169) (0.178) (0.309) (0.322)

log Ẑ 0.907*** 0.969*** 0.736 0.876
(0.265) (0.275) (1.305) (1.338)

log Ẑ2 -0.103* -0.112* -0.0297 -0.0714
(0.0565) (0.0586) (0.534) (0.546) )

log Ẑ3 -0.0102 -0.00556
(0.0693) (0.0707)

β̂distance 0.767 0.802 0.743 0.776 0.743 0.776
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.292 0.304 0.294 0.304 0.294
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Cournot model with mean of of estimated σ and γ . Standard errors
clustered at destination level in parentheses.
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ily biased.

Table 13: Sector-level estimates by 2-digit product.

Median est coefficient σ = 5, γ = 0 σ est, γ = 0 σ, γ est
log distance w/ corr -1.040 -1.023 -0.930
log distance w/o corr -0.880 -0.873 -0.872

β̂distance w/ corr 0.260 0.294 0.622

β̂distance w/o corr 0.220 0.278 0.585
abs. pct. bias (10th pctile) 4% 1.4% 0.01%
abs. pct. bias (median) 13.7 % 11.2% % 5.2
abs. pct. bias (90th pctile) 39.9% 46.4% 19.4%
Note: Sector-level data. Median estimated coefficients by industry. Cournot
model.

6 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to evaluate the merits of our oligopoly

correction terms. To this end, we develop and calibrate a model in which firms first self-

select into export destinations and then compete in quantities. Using the calibrated model,

we generate a Monte Carlo data-set in which the estimation challenges (due to oligopolistic

behavior and selection into export markets) discussed in Sections 2.1 and 4.1 are present.

We then apply our firm- and industry-level estimators to that data-set and confirm that our

oligopoly correction terms significantly improve the accuracy of our estimates.

6.1 Setup

The oligopoly model is as described in Section 2, with λ = 1 (Bertrand-Nash conduct). In

the following, we focus on a sector z and drop the sector index to ease notation. We now put

more structure on the distribution of cost and quality shocks, as well as on how firms make

entry decisions into export destinations.

Recall from Section 2 that the cost for firm i of producing and selling qin units in market

n is Cin(qin) = 1
1+γ

cinτinq
1+γ
in . We decompose cin log-linearly as log cin = εci + εcin, where εci

and εcin are independent draws from a normal distribution with mean zero and variance υ2

and θ2, respectively. Moreover, the iceberg-type trade cost τin is set equal to 1 if firm i is

based in country n and otherwise to τon ≡ T × (dist(o, n))β, where o 6= n denotes the country

in which firm i is located, dist(o, n) is the distance between countries o and n, and T and
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β are parameters. Finally, we set ain (the quality of product i in market n) equal to 1 for

every i and n.20

A country-o firm that wants to sell in country n 6= o must pay a fixed cost fon ≡ F ×
φoon × φuon, where F is a parameter and φood and φuod are i.i.d. draws from a standard log-

normal distribution. The reason for this decomposition is that we will later assume that φood

is observable to the econometrician whereas φuod is not, so that φood can be used as an excluded

first-stage variable when applying the HMR methodology. We set foo = 0 for every country

o, so that a firm is always active in its home market.

We consider a two-stage game of complete information in which firms first simultane-

ously decide which markets to enter, and then compete in quantities in each market. Under

oligopoly, this game is likely to have multiple subgame-perfect equilibria. If there were no

fixed-cost heterogeneity, it would be possible to rank firms from highest to lowest (destination-

specific) type and construct a subgame-perfect equilibrium in which high-type firms enter

first. With fixed-cost heterogeneity (in addition to type heterogeneity), there is no such

natural ranking of firms and constructing a subgame-perfect equilibrium is a non-trivial

combinatorial problem. We therefore make the following simplifying behavioral assumption:

When making entry decisions, firms believe that they will receive monopolistic-competition

profits (given the set of firms that entered). We can then follow Spence (1976) and rank

firms according to their survival coefficients, (cinτon)
1−σ
1+σγ /fon (for every origin country o and

firm i ∈ Jo), in each market n. This pins down a natural “equilibrium” entry sequence in

market n, in which firms with a higher survival coefficient enter first.

6.2 Calibration

We choose parameter values to generate a Monte Carlo data-set broadly similar to the firm-

level data-set used in Section 5. We use the same set of countries as in the empirical imple-

mentation and take the bilateral distance matrix dist(o, d) directly from the data. Market

size in country n, αnEn in Section 2, is set equal to (something proportional to) country-n

20Thus, using the notation of Section 2, we are setting

εcn = εai = εan = εain = ετi = ετn = ητin = 0.

The assumption that there is no destination-specific shock (εcn = εan = ετn = 0) is without loss of generality:
Since such shocks would affect all firms symmetrically, they would have no impact on equilibrium market
shares and profits given the assumption of CES demand. As for the firm and firm-destination quality
and trade-cost shocks, we could alternatively assume that they are drawn i.i.d. from normal distributions
and obtain an observationally equivalent model, since the resulting firm types would still be log-normally
distributed.
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GDP in the data. We assume that, for every country o, |Jo|, the number of firms based in

o, is proportional to that country’s GDP, with the proportionality coefficient chosen so that

the total number of firms is 220. The elasticity of substitution σ and the returns-to-scale

parameter γ are set to 5 and 0, respectively, as in our baseline empirical specification. Fi-

nally, we set β = 0.35, which is our baseline empirical estimate of the distance coefficient

(see Table 4).

We still require values for the following four parameters: F , the intercept of the fixed-

cost function; T , the intercept of the trade-cost function; ν, the standard deviation of firm

baseline productivity draws; and θ, the standard deviation of firm-destination productivity

shocks. We calibrate those parameters to match the following empirical moments (computed

using the Chinese and French firm-level data):

1. The fraction of zeros in all potential (firm-destination-product-year) export relation-

ships (0.92);

2. the mean (by origin-destination-product-year) aggregate combined market share of Chi-

nese and French firms (0.139);

3. the median (by origin-product-year) 90/10 ratio of firm-level total exports (451);

4. the median (by origin-destination-product-year) 90/10 ratio of firm-destination exports

(220).

The fact that each of the moments has a natural parameter counterpart gives rise to the

following informal identification argument. Intuitively, we expect F to have a strong and

negative effect on moment 1, T to have a strong and negative effect on moment 2, υ to

have a strong and positive effect on moment 3, and θ to have a strong and positive effect on

moment 4. In practice, we adjust the vector of parameters (F, T , υ, θ) to minimize the sum

of the squared Davis-Haltiwanger deviations between theoretical and empirical moments.21

We approximate the theoretical moments using Monte Carlo integration. For each pa-

rameter vector, we perform 10 Monte Carlo runs. For each run, we randomly draw vectors

and matrices of firm baseline costs (εci), firm-destination cost shocks (εcin), and fixed-cost

shocks (φood) and (φuod). For each destination within a run, we then compute the equilibrium

21The Davis-Haltiwanger deviation (Davis, Haltiwanger, and Schuh, 1996) is defined as the difference
between the theoretical and empirical moments, divided by the arithmetic average of the theoretical and
empirical moments. This residual converges to the percentage deviation when the theoretical moment tends
to the empirical moment. The advantage of using this residual for our calibration procedure is that, in
contrast to the percentage deviation, it always remains bounded and gives rise to symmetric punishments for
positive and negative deviations.

31



of the entry game using the behavioral assumption mentioned in the previous subsection, and

the oligopoly equilibrium using a variant of Nocke and Schutz (2018b)’s nested fixed-point

algorithm. Having done that for all ten runs, we compute arithmetic averages (or medians)

across runs to obtain Monte Carlo approximations to our theoretical moments.

Our calibration algorithm converges to F = 1.34× 10−9 (times total world expenditures

in the sector, which we normalized to unity), T = 0.144, υ = 0.254, and θ = 1.13. At

that parameter vector, we obtain nearly perfect matches for moments 3 and 4 (456 and 221,

respectively, vs. 451 and 220 in the data), and we slightly under-predict the fraction of zeros

in the firm-level export matrix (80.4% vs. 92% in the data) and the combined market share

of Chinese and French firms (12.3% vs 13.9% in the data).

6.3 Data Generation and Results

Now that the parameters have been calibrated, we can generate the Monte Carlo data-set.

We perform 200 Monte Carlo runs. Each run features different realizations of the random

vectors and matrices of firm baseline costs (εci), firm-destination cost shocks (εcin), and fixed-

cost shocks (φood) and (φuod), and can thus be thought of as a different sector or a different

time period. For each run, we compute the equilibrium of the entry model and of the

quantity-setting game in all markets, and we store firm-level sales and market shares, origin,

destination, firm, and run indicators, as well bilateral distance and observable fixed-cost

shocks. To make the data-set comparable to the one used in our empirical application, we

only keep observations for firms based in the countries corresponding to China and France in

the Monte Carlo experiment. We thus obtain a firm-level data-set, which we also aggregate

up to construct an industry-level data-set. We can then run our firm- and industry-level

regressions on those Monte Carlo data-sets to evaluate the performance of our oligopoly

correction terms.

The results of firm-level regressions can be found in Table 14. A first observation is that

all OLS estimates are strongly biased towards zero, consistent with the heteroskedasticity

bias discussed in Section 2.1 and with the empirical results in Table 4. Focusing now on

PPML estimates, we see that specifications that do not use our correction term also tend to

underestimate the absolute value of the distance coefficient due to the omitted variable bias.

The PPML specifications with the oligopoly correction term deliver estimates that are very

close to the true distance coefficient (−1.4).

The results of industry-level regressions are in Table 15. In all specifications, our oligopoly

correction term improves the accuracy of the distance-coefficient estimate. Specifications
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Table 14: Monte Carlo: Firm-Level Results
(1) (2) (3) (4) (5) (6) (7) (8)

OLS OLS PPML PPML OLS OLS PPML PPML
all all all all top3 exp top3 exp top3 exp top3 exp

VARIABLES no corr corr no corr corr no corr corr no corr corr
ldist -0.576*** -0.588*** -0.966*** -1.446*** -0.624** -0.645** -1.064*** -1.632***

(0.0777) (0.0781) (0.0801) (0.291) (0.261) (0.276) (0.146) (0.451)

Observations 116,483 116,483 427,505 427,505 8,981 8,981 21,405 21,405
R-squared 0.326 0.322 0.455 0.446
Firm-year FE YES YES YES YES YES YES YES YES
Destination-year FE YES YES YES YES YES YES YES YES

Note: True distance coefficient is −1.4.

that explicitly account for selection (columns Heckman and HMR), when combined with our

correction term, deliver estimates that are very close to the true distance coefficient (−1.4).

Table 15: Monte Carlo: Industry-Level Results
(1) (2) (3) (4) (5) (6) (7) (8)

OLS OLS PPML PPML Heckman Heckman HMR HMR
all all all all all all all all

VARIABLES no corr corr no corr corr no corr corr no corr corr

ldist -1.165*** -1.300*** -0.966*** -1.192*** -1.202*** -1.341*** -1.233*** -1.378***
(0.0632) (0.0720) (0.0801) (0.123) (0.0748) (0.0864) (0.0754) (0.0852)

log Ẑ -15.96 -23.24
(25.41) (29.61)

(log Ẑ)2 11.21 15.64
(15.27) (18.00)

(log Ẑ)3 -2.890 -3.869
(3.175) (3.785)

inv. Mills 0.770 0.845 -1.006 -2.068
(0.758) (0.878) (4.095) (4.636)

Observations 7,628 7,628 8,432 8,432 7,628 7,628 7,628 7,628
R-squared 0.703 0.668 0.703 0.668 0.703 0.668
Firm-year FE YES YES YES YES YES YES YES YES
Destination-year FE YES YES YES YES YES YES YES YES

Note: True distance coefficient is −1.4.

7 Conclusions

In this paper, we have evaluated the consequences of oligopolistic behavior for the estimation

of gravity equations for trade flows. We showed that with oligopolistic competition, firm-

level gravity equations based on a standard CES demand framework need to be augmented

by markup terms that are functions of firms’ market shares. At the aggregate level, the addi-

tional term takes the form of the exporting country’s market share in the destination country
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multiplied by an exporter-destination-specific Herfindahl-Hirschman index. We showed how

to construct appropriate correction terms for both cases that can be used to avoid problems

of omitted variable bias. Using combined French and Chinese firm-level export data as well

as a sample of product-level imports by European countries, we showed that correcting for

oligopolistic behavior can lead to substantial changes in the coefficients on standard gravity

regressors.

Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. To complete the proof of the proposition, we need to: (a) Show that the function S

is well defined, and study its monotonicity properties as well as its limits; (b) show that the

equilibrium condition (10) has a unique solution; (c) show that, at λ = 1, the first-order

conditions of profit maximization are sufficient for global optimality, so that the profile of

quantities (q∗j (1))j∈J does constitute a Nash equilibrium of the Cournot game. We do so

below.

(a) As 1 + σγ > 0, the right-hand of equation (9) is strictly increasing in si, whereas the

left-hand side is non-increasing in si. It follows that equation (9) has at most one solution.

As si tends to 0, the left-hand side of that equation tends to 1, whereas the right-hand side

tends to 0. As si tends to ∞, the left-hand side tends to 1 or −∞, and the right-hand side

tends to +∞. The equation therefore has a unique solution, S(Ti/H, λ) ∈ (0, 1/λ), where

1/λ ≡ ∞ when λ = 0.

It is easily checked that S(·, ·) is strictly increasing in its first argument and strictly

decreasing in its second argument. By monotonicity, S(·, λ) has limits at 0 and ∞. Clearly,

those limits are equal to 0 and 1/λ, respectively.

(b) The results in part (a) of the proof imply that the left-hand side of equation (10) is

strictly decreasing in H, and has limits 0 and |J |/λ as H tends to ∞ and 0, respectively. It

follows that equation (10) has a unique solution, H∗(λ).
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(c) Rewriting equation (2) with λ = 1 and rearranging terms yields:

∂πi
∂qi

= qγi

σ − 1

σ
αE

a
1
σ
i q
− 1+σγ

σ
i∑

j∈J a
1
σ
j q

σ−1
σ

j

1− a
1
σ
i q

σ−1
σ

i∑
j∈J a

1
σ
j q

σ−1
σ

j

− ciτi
 ,

where we have dropped the destination subscript for ease of notation. As 1 + σγ > 0, the

term inside square brackets is strictly decreasing in qi. Moreover, that terms tends to +∞
and −τici as qi tends to 0 and +∞, respectively. It follows that qi maximizes firm i’s profit

if and only if firm i’s first-order condition holds at qi.

A.2 Proof of Proposition 2

Proof. To apply Taylor’s theorem, we require the value of s∗′e (0). This requires computing

the partial derivatives of S(·, ·) at λ = 0 as well as H∗′(0). Differentiating equation (9) with

respect to si, λ, and ti ≡ Ti/H at λ = 0 yields

−sidλ =
1 + σγ

σ − 1

dsi
si
− σ(1 + γ)

σ − 1

dti
ti
.

It follows that22

ti∂1 logS(ti, 0) =
σ(1 + γ)

1 + σγ
and ∂2 logS(ti, 0) = − σ − 1

1 + σγ
S(ti, 0).

Next, we differentiate equation (10) with respect to λ and H:

∑
j∈J

[
−Tj
H
∂1S

(
Tj
H
, λ

)
dH

H
+ ∂2S

(
Tj
H
, λ

)
dλ

]
= 0.

Setting λ = 0 and plugging in the values of the partial derivatives of S, we obtain:

∑
j∈J

[
−σ(1 + γ)

1 + σγ
s∗j(0)

dH

H
− σ − 1

1 + σγ

(
s∗j(0)

)2
dλ

]
= 0.

Making use of the definition of HHI(0) and of the fact that market shares add up to unity,

we obtain:
H∗′(0)

H∗(0)
= − σ − 1

σ(1 + γ)
HHI(0).

22Notation: ∂kS is the partial derivative of S with respect to its kth argument.
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We can now compute s∗′i (0):

s∗′i (0) =
∂

∂λ
S

(
Ti

H∗(λ)
, λ

)∣∣∣∣
λ=0

= − Ti
H∗(0)

∂1S

(
Ti

H∗(0)
, 0

)
H∗′(0)

H∗(0)
+ ∂2S

(
Ti

H∗(0)
, 0

)
=

σ − 1

1 + σγ

[
s∗i (0) HHI(0)− (s∗i (0))2

]
.

It follows that

s∗′e (0)

s∗e(0)
=

σ − 1

1 + σγ

1

s∗e(0)

∑
j∈E

[
s∗j(0) HHI(0)−

(
s∗j(0)

)2]
=

σ − 1

1 + σγ

[
HHI(0)− s∗e(0)

∑
j∈E

(
s∗j(0)

s∗e(0)

)2
]

=
σ − 1

1 + σγ
[HHI(0)− s∗e(0) HHIe(0)] .

Applying Taylor’s theorem at the first order in the neighborhood of λ = 0 yields:

log s∗e(λ) = log s∗e(0) +
d

dλ
log s∗e(λ)

∣∣∣∣
λ=0

λ+ o(λ)

= log s∗e(0) +
σ − 1

1 + σγ
[HHI(0)− s∗e(0) HHIe(0)]λ+ o(λ)

= log s∗e(0) +
σ − 1

1 + σγ
[HHI(λ)− s∗e(λ) HHIe(λ)]λ+ o(λ),

where the last line follows from the fact that HHI(λ)−HHI(0) and s∗e(λ) HHIe(λ)−s∗e(0) HHIe(0)

are at most first order.

B Price Competition

B.1 Theoretical Results

Under price competition, the profit of firm i when selling in destination n is:

πin = pinainp
−σ
in P

σ−1
n αnEn − Cin

(
ainp

−σ
in P

σ−1
n αnEn

)
,

where we have dropped the sector index z for ease of notation.

The degree of strategic interactions between firms continues to be governed by the conduct
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parameter λ ∈ [0, 1]: When firm i increases its price by an infinitesimal amount, it perceives

the induced effect on Pn to be equal to λ∂Pn/∂pin. It is still the case that monopolistic

competition arises when λ = 0, whereas Bertrand competition arises when λ = 1. The

first-order condition of profit maximization of firm i in destination n is given by

0 =
∂πin
∂pin

= ainp
−σ
in P

σ−1
n αnEn + (pin − C ′in(qin))

[
− σ

pin
+
σ − 1

Pn
λ
∂Pn
∂pin

]
αnEnainp

−σ
in P

σ−1
n

= qin

(
1− pin − C ′in(qin)

pin
[σ − λ(σ − 1)sin]

)
, (15)

where

sin ≡
ainp

1−σ
in∑

j∈J ajnp
1−σ
jn

(16)

continues to be the market share of firm i in destination n.

Equation (15) pins down firm i’s optimal markup under price competition:

µin =
1

σ − λ (σ − 1) sin
,

where µin =
pin−C′in(qin)

pin
is firm i’s Lerner index. Apart from this change in the expression for

the firm’s optimal markup, all other firm-level results go through as before.

We now turn our attention to the sector-level results. As in Section 4, we begin by

employing an aggregative games approach to analyze the equilibrium in a given market,

dropping the market subscript n to ease notation. The market-level aggregator H is now

defined as

H ≡ P 1−σ =
∑
j∈J

ajp
1−σ
j

and firm i’s type as

Ti ≡ ai (αE)
γ(1−σ)
1+γ (ciτi)

1−σ
1+γ .

Plugging these definitions into equation (15), making use of equation (16), and rearrang-

ing, we obtain: (
1− s

1+σγ
σ−1

i

(
H

Ti

) 1+γ
σ−1

)
(σ − λ(σ − 1)si) = 1. (17)

Note that the left-hand side of equation (17) is strictly decreasing on the interval(
0,min

{
σ

λ(σ − 1)
,

(
Ti
H

) 1+γ
1+σγ

})
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and tends to σ and 0 as si tends to the lower and upper endpoints of that interval, respectively.

Equation (17) therefore has a unique solution on the above interval, denoted S(ti, λ) with

ti ≡ Ti/H. (Solutions outside that interval necessarily give rise to strictly negative markups

and are thus suboptimal.)

It is easily checked that S is strictly increasing in its first argument, strictly decreasing

in its second argument, and tends to 0 and 1/λ as ti tends to 0 and ∞, respectively.

As before, the equilibrium condition is that market shares must add up to unity:

∑
j∈J

S

(
Ti
H
, λ

)
= 1. (18)

The properties of the function S, described above, imply that this equation has a unique

solution, H∗(λ).

To summarize:

Proposition A. In each destination market, and for any conduct parameter λ, there exists

a unique equilibrium in prices. The equilibrium aggregator level H∗(λ) is the unique solu-

tion to equation (18). Each firm i’s equilibrium market share is s∗i (λ) = S(Ti/H
∗(λ), λ),

where S(Ti/H
∗(λ), λ) is the unique solution to equation (17). From equation (16), firm i’s

equilibrium price is given by

p∗i (λ) =

(
s∗i (λ)H∗(λ)

ai

) 1
1−σ

.

Proof. All that is left to do is check that first-order conditions are sufficient for optimality

when λ = 1. Combining equations (15) and (17) yields:

∂πi
∂pi

= qi [1− χ(pi)φ(pi)] ,

where

χ(pi) ≡ 1−

(
aip

1−σ
i∑

j ajp
1−σ
j

) 1+σγ
σ−1

(∑
j ajp

1−σ
j

Ti

) 1+γ
σ−1

and φ(pi) ≡ σ − (σ − 1)
aip

1−σ
i∑

j ajp
1−σ
j

.

As 1 + σγ > 0, the functions χ and φ are strictly increasing. Moreover, φ(pi) > 0 for every

pi, whereas there exists p̃i > 0 such that χ(pi) > 0 if pi > p̃i and χ(pi) < 0 if pi < p̃i.

Hence, πi is strictly increasing on the interval (0, p̃i), and firm i’s first-order condition holds

nowhere on that interval. The fact that limpi→∞ χ(pi) = 1 and limpi→∞ φ(pi) = σ and the
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monotonicity properties of χ and φ on (p̃i,∞) imply the existence of a unique p̂i at which

firm i’s first-order condition holds. Moreover, πi is strictly increasing on (p̃i, p̂i) and strictly

decreasing on (p̂i,∞). First-order conditions are therefore sufficient for optimality.

Having characterized the equilibrium in a given destination, we now adapt the first-order

approach to sector-level gravity to the case of price competition. As in Section 4, let E ( J
denote the subset of exporters in country e that sell in the destination market n. The

combined market share of those exporters in market n is given by

s∗e(λ) ≡
∑
i∈E

s∗i (λ).

As before, we approximate s∗e(1) at the first order. The definitions of HHI and HHIe are as

in Section 4.

We obtain:

Proposition B. At the first order, in the neighborhood of λ = 0, the logged joint market

share in destination n of the firms from export country e is given by

log s∗e(λ) = log s∗e(0) +
σ − 1

σ(1 + σγ)
[HHI(λ)− s∗e(λ) HHIe(λ)]λ+ o(λ).

Proof. The proof follows the same developments as the proof of Proposition 2. We begin by

computing the partial derivatives of S at λ = 0. It is useful to rewrite first equation (17) as

si = t
1+γ
1+σγ

i

(
1− 1

σ − λ(σ − 1)si

) σ−1
1+σγ

. (19)

Taking the logarithm and totally differentiating the equation at λ = 0 yields:

dsi
si

=
1 + γ

1 + σγ

dti
ti
− σ − 1

σ(1 + σγ)
sidλ.

The partial derivatives of S are thus given by

ti∂1 logS(ti, 0) =
1 + γ

1 + σγ
and ∂2 logS(ti, 0) = − σ − 1

σ(1 + σγ)
S(ti, 0).

To obtain H∗′(0), we differentiate equation (18):

∑
j∈J

[
−Tj
H
∂1S

(
Tj
H
, λ

)
dH

H
+ ∂2S

(
Tj
H
, λ

)
dλ

]
= 0.
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Setting λ = 0, plugging in the values of the partial derivatives of S, and using the fact that

market shares add up to unity, we obtain:

H∗′(0)

H∗(0)
= − σ − 1

σ(1 + γ)
HHI(0).

Next, we compute s∗′i (0):

s∗′i (0) = − Ti
H∗(0)

∂1S

(
Ti

H∗(0)
, 0

)
H∗′(0)

H∗(0)
+ ∂2S

(
Ti

H∗(0)
, 0

)
=

σ − 1

σ(1 + σγ)

[
s∗i (0) HHI(0)− (s∗i (0))2

]
.

Adding up and dividing by s∗e(0) yields:

s∗′e (0) =
σ − 1

σ(1 + σγ)
[HHI(0)− s∗e(0) HHIe(0)] .

As in the proof of Proposition 2, we can then apply Taylor’s theorem to obtain the result.

Proposition B motivates the following approximation:

log s∗e(1) ' log s∗e(0) +
σ − 1

σ(1 + σγ)
[HHI(1)− s∗e(1) HHIe(1)] .

As in Section 4, this approximation can then be used to derive the sector-level gravity re-

gression

log r̃en = ζe + ξn + β
1− σ

1 + σγ
Xen + ηen

where

log r̃en ≡ log ren +
σ − 1

σ(1 + σγ)
sen HHIen

is the value of export flows from e to n, purged from oligopolistic market power effects.

Note that the correction term under price competition is equal to the one under quantity

competition divided by σ.

B.2 Empirical Results

Table 16 presents results for our estimates of σ and γ using the estimation procedure from

Section 3 but replacing the Cournot markup formula with its Bertrand equivalent. This only

leads to minor changes in coefficient estimates.
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Table 16: Price Elasticities and Returns-to-Scale Estimates – Price Competition

σ γ
Mean 4.96 0.31
25th Percentile 2.06 0.02
Median 3.27 0.10
75th Percentile 5.22 0.28
Min 1.01 -0.11
Max 26.03 4.5
Standard Deviation 4.89 0.67
HS 2-digit products 78 78
Note: Table shows descriptive statistics for estimates of σ and γ. Estimates
computed using 6-digit HS firm-level information but constrained to be identi-
cal within 2-digit HS products.

Tables 17-19 show results for the pooled firm-level regressions. In all specifications, the

point estimates on the distance coefficient are much larger in absolute magnitude when

correcting for oligopoly bias. The absolute value of the distance coefficient is slightly smaller

than with Cournot competition.

Tables 20-22 show results for the pooled sector-level regressions. Again, the distance co-

efficient becomes larger in absolute magnitude when including the markup correction term.

Like in the case of Cournot competition, the absolute differences in coefficient magnitudes

between the estimates with and without correction are smaller than with the firm-level esti-

mates.

Table 17: Firm-level Gravity Estimates – Bertrand competition, σ = 5, γ = 0.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.418*** -0.874*** -0.246*** -0.232***

(0.190) (0.021 ) (0.014) (0.014)

β̂distance 0.355 0.219 -
Observations 11,955,786 11,955,786 708,386 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Bertrand
model with σ = 5 and γ = 0. Standard errors in brackets, clustered at the destination-
year level.

41



Table 18: Firm-level Gravity Estimates – Bertrand competition, σ = 4.96, γ = 0.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.415*** -0.874*** -0.246*** -0.232***

(0.189) (0.0210 ) (0.013) (0.013)

β̂distance 0.357 0.221

Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.06 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Bertrand
model with mean of estimated σ and γ = 0. Standard errors in brackets, clustered at
the destination-year level.

Table 19: Firm-level Gravity Estimates – Bertrand competition, σ = 4.96, γ = 0.31.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -0.957*** -0.874*** -0.237*** -0.232***

(0.040) (0.021) (0.014) (0.014)

β̂distance 0.613 0.560

Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.06 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Bertrand
model with mean of estimated σ and γ. Standard errors in brackets, clustered at the
destination-year level.

Table 20: Sector-level Gravity Estimates – Bertrand competition, σ = 5, γ = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.217*** -1.151*** -1.177*** -1.150*** -1.177***

(0.198) (0.202) (0.190) (0.194) (0.193) (0.197)
inv mills -0.121 -0.123 0.678*** 0.702*** 0.639** 0.672**

(0.165) (0.168) (0.169) (0.174) (0.309) (0.315)

log Ẑ 0.907*** 0.939*** 0.736 0.809
(0.265) (0.270) (1.305) (1.322)

log Ẑ2 -0.103* -0.108* -0.0297 -0.0513
(0.0565) (0.0575) (0.534) (0.540)

log Ẑ3 -0.0102 -0.00780
(0.0693) (0.0700)

β̂distance
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.297 0.304 0.299 0.304 0.299
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Bertrand model with σ = 5 and γ = 0. Standard errors clustered at
destination level in parentheses.
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Table 21: Sector-level Gravity Estimates – Bertrand Competition, σ = 4.96, γ = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.217*** -1.151*** -1.177*** -1.150*** -1.177***

(0.198) (0.202) (0.190) (0.194) (0.193) (0.197)
inv mills -0.121 -0.123 0.678*** 0.702*** 0.639** 0.672**

(0.165) (0.168) (0.169) (0.173) (0.309) (0.315)

log Ẑ 0.907*** 0.939*** 0.736 0.808
(0.265) (0.270) (1.305) (1.322)

log Ẑ2 -0.103* -0.108* -0.0297 -0.0512
(0.0565) (0.0575) (0.534) (0.540)

log Ẑ3 -0.0102 -0.00780
(0.0693) (0.0700)

β̂distance
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.297 0.304 0.299 0.304 0.299
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Bertrand model with mean of estimated σ and γ = 0. Standard errors
clustered at destination level in parentheses.

Table 22: Sector-level Gravity Estimates – Bertrand competition, σ = 4.96, γ = 0.31
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.200*** -1.151*** -1.161*** -1.150*** -1.161***

(0.198) (0.199) (0.190) (0.192) (0.193) (0.194)
inv mills -0.121 -0.122 0.678*** 0.687*** 0.639** 0.652**

(0.165) (0.166) (0.169) (0.171) (0.309) (0.311)

log Ẑ 0.907*** 0.919*** 0.736 0.765
(0.265) (0.267) (1.305) (1.311)

log Ẑ2 -0.103* -0.105* -0.0297 -0.0382
(0.0565) (0.0569) (0.534) (0.536) )

log Ẑ3 -0.0102 -0.00925
(0.0693) (0.0696)

β̂distance
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.300 0.304 0.302 0.304 0.302
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Bertrand model with mean of of estimated σ and γ . Standard errors
clustered at destination level in parentheses.
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C Data Appendix

Table 23: List of export destinations included in the firm-level and product-level data

Austria Latvia
Belgium Lithuania
Bulgaria Luxembourg
Croatia Malta
Cyprus Netherlands
Czech Rep. Norway
Denmark Poland
Estonia Portugal
Finland Romania
France Serbia
Germany Slovakia
Greece Slovenia
Hungary Spain
Iceland Sweden
Ireland Turkey
Italy UK
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