Rising Pharmaceutical Innovation in the Global South: Painting with New Colors

OSUN Research Collaboration on Technology, Equity and Right to Health - Medicines

OPEN SOCIETY FOUNDATIONS

Rising Pharmaceutical Innovation in the Global South: Painting with New Colors

Global Health Centre, Geneva Graduate Institute

Marcela Vieira Yiqi Liu

Azizah Siddiqui Adrián Alonso Ruiz Kaitlin Large Suerie Moon

Introduction

Context:

Scarce information on existing activities, capacities, and outcomes of pharmaceutical innovation in low- and middle-income countries (LMICs)

Objectives:

- 1. To provide a baseline picture of pharmaceutical innovation in LMICs.
- 2. To identify possible alternative R&D models being implemented in LMICs.

Methodology:

- Literature review
- Scoping interviews
- Database analysis
- Innovative proposals of R&D

Literature review and Scoping interviews

Most active LMICs

- Growing activity in pharmaceutical innovation in developing countries
- Mostly only a few LMICs China, India, Brazil, South Africa, and Cuba

Government role and R&D funding

- Limited private capital
- Significant government funding and support
- Philanthropic funding and development assistance

Innovation pathways

- "Imitation to innovation"
- Funding and cumulative capacity for R&D from production and sale of generics & research services
- Reduced policy space due to international agreements restricting access to information, knowledge, and technology

R&D policies

- Policies linking R&D capacity, technological and industrial development, and public health needs
- Mandatory local manufacturing policies
- Clinical trials to be conducted domestically
- Low political priority, especially beyond UMICs

Actors involved in pharmaceutical R&D

- Role of academic institutions and SMEs
- Gaps in translational research
- International collaboration

R&D priorities

- Addressing local needs and improving ease of use
- Risk of private sector not addressing diseases mostly affecting "poor market segments"

Challenges and barriers

- Lack of financial and human resources
- Research infrastructure
- Targeted policies
- Regulatory issues
- Limited pharmacovigilance

Outputs

Table 1. Examples of pharmaceutical products developed in LMICs

Outputs

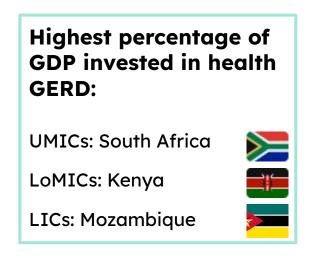
- 23 products, from 7 LMICs Brazil, China, Cuba,
 Egypt/Malaysia, India, Russia
- Drugs, biologics and vaccines, plant-based medicines, diagnostics platforms, monoclonal antibodies, and gene therapies
- To treat several diseases, including NTDs, infectious diseases, HIV, tuberculosis, meningitis, viral hepatitis, diabetes, antibiotics, and cancer.
- Developed by private companies, public and private universities, public research centers, and state-owned institutions, as well as in collaboration with global initiatives

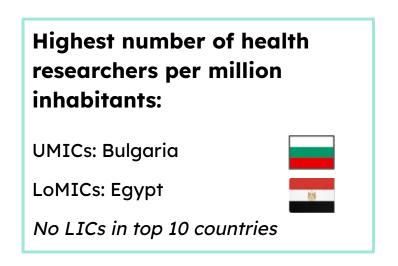
Data

WHO Global Observatory on Health Research and Development

- World RePORT
- G-FINDER
- WHO International Clinical Trials Registry Platform (ICTRP)

Indicators


- Funding flows
- Health research capacity
- Clinical trials


^{*}Two files with supplementary data used for the analysis of clinical trials are available online.

Database analysis: Funding flows and R&D capacities

Data: WHO Global Observatory on Health Research and Development

Data: World RePORT by NIH

LMICs with the highest number of research grants for biomedical research:

South Africa

China

Kenya

LMICs with the highest number of research organizations receiving grants:

UMICs: China, South Africa, Brazil

LoMICs: India, Kenya

LICs: Uganda, Malawi

Data: G-FINDER, R&D funding for diseases "that disproportionately affect the world's most disadvantaged populations"

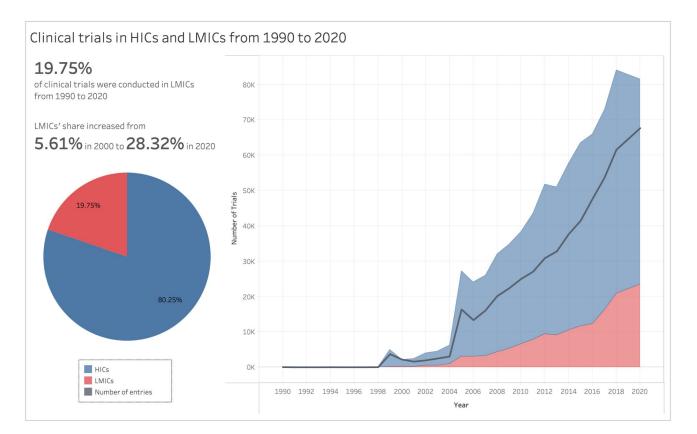
From 2010 to 2020, there was an increase of more than 450% in the total amount funded by **MICs**.

Funding from **LICs** remained roughly the same.

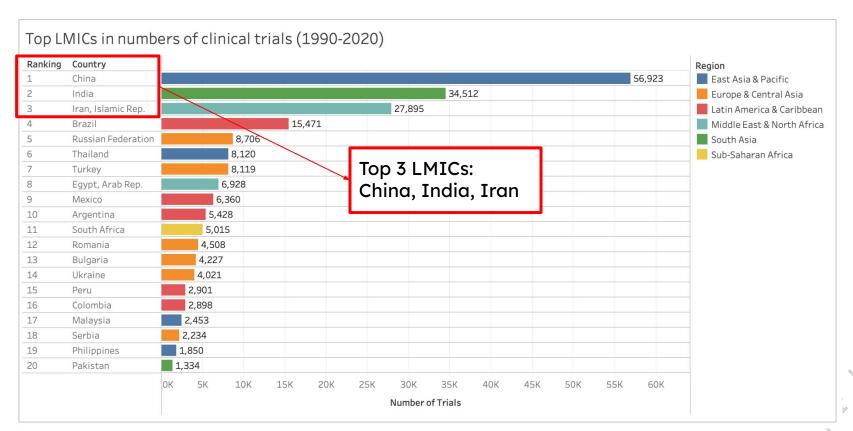
Among LMICs:

The most significant public funder: India

The top receiving countries:


India and South Africa

Database analysis: Clinical Trials - Number of Trials



From 2010 to 2020, the number of trials in LMICs increased by **375%**.

Database analysis: Clinical Trials - Number of Trials

Database analysis: Clinical Trials - Phases

The largest numbers of trials were in **phase 3** in both HICs and LMICs.

Most of the top 20 LMICs had a relatively larger number of **phase 2 and phase 3 trials**.

China had a significant share of phase 0 and phase 1 trials;

India had a significant share of **phase 1** trials.

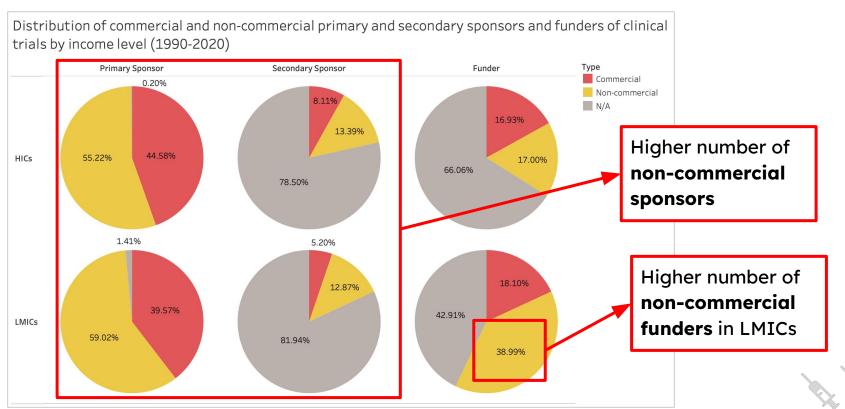
A significant increase in phase 0 trials in LMICs from 2010 to 2020.

Egypt and Thailand showed significant growth in earlier stages R&D.

Indicating growing capacity in the riskier, more innovative, earlier stages of R&D in LMICs

Database analysis: Clinical Trials - Type of Diseases

The largest numbers of trials were for **malignant neoplasms** in both HICs and LMICs.


Infectious and parasitic diseases represented only about 5% of trials in HICs, and 9% in LMICs.

A significant **increase** in trials for:

- · Respiratory diseases (all countries)
- · Non-communicable diseases (LMICs)
- · Congenital anomalies (LMICs)

Database analysis: Clinical Trials - Type of Sponsors / Funders

Database analysis: Clinical Trials - Type of Sponsors / Funders

Roles of **non-commercial** actors:

- Increasing involvement of non-commercial sponsors and funders over the past years, particularly in the early R&D phases.
- Non-commercial actors played a markedly dominant role in some areas, such as maternal conditions, sexual health, perinatal conditions, and nutritional deficiency

Innovative proposals of R&D

WHO/CEWG - 2013

- 52 of the 106 project proposals
- Submitted by governments, public research institutes, and universities
- 34 proposals from 23 LMICs

- Important role of non-commercial actors
- Willingness to take alternative approaches to R&D in LMICs

Table 9. List of LMICs with organizations that submitted proposals of projects of innovative R&D to the WHO

African Region	Asian Region	Latin American Region	
Ethiopia	Bangladesh	Bolivia	
Kenya	India	Brazil	
South Africa	Indonesia	Colombia	
Sudan	Malaysia	Costa Rica	
Tanzania	Sri Lanka	Cuba	
Zimbabwe	Thailand	El Salvador	
		Ecuador	
		Guatemala	
		Peru	
		Venezuela	

See also Appendix 5.3. List of proposals submitted by organizations based in LMICs

Discussion and conclusions

- Broad picture of who was involved in pharmaceutical R&D in LMICs, in which countries, for which diseases, in which R&D phases, and with what results – and changes over time
- Growing investment in R&D, particularly from MICs
- Growing capacity increase in the number of research organizations and the amount of funding received
- Growing number of clinical trials, including in the earlier, more innovative and riskier phases
- Very significant and growing role of non-commercial funders and sponsors
- High number of non-commercial actors suggests fertile soil for alternative R&D models in LMICs that are not driven primarily by market incentives

Top 16 LMICs involved in pharmaceutical R&D				
Brazil	Cuba	Iran	Russia	
Bulgaria	Egypt	Kenya	Serbia	
China	Georgia	Malaysia	South Africa	
Colombia	India	Mozambique	Uganda	

THANK YOU!

Knowledge Portal on Innovation and Access to Medicines www.knowledgeportalia.org

Stay updated with our latest news

International Geneva Global Health Platform
graduateinstitute.ch/Geneva-Health
Global Health Centre
graduateinstitute.ch/globalhealth
Subscribe to our mailing list
graduateinstitute.ch/newsletters

